A hit-and-run (HR) crash occurs when the driver of the offending vehicle flees the crash scene without reporting it or aiding the victims. The current study aimed at contributing to existing literatures by comparing factors which might affect the crash severity in HR and non-hit-and-run (NHR) crashes. The data was extracted from the police-reported crash data from September 2017 to August 2018 within the City of Chicago. Two multinomial logistic regression models were established for the HR and NHR crash data, respectively. The odds ratio (OR) of each variable was used to quantify the impact of this variable on the crash severity. In both models, the property damage only (PDO) crash was selected as the reference group, and the injury and fatal crash were chosen as the comparison group. When the injury crash was taken as the comparison group, it was found that 12 variables contributed to the crash severities in both HR and NHR model. The average percentage deviation of OR for these 12 variables was 34%, indicating that compared with property damage, HR crashes were 34% more likely to result in injuries than NHR crashes on average. When fatal crashes were chosen as the comparison group, 2 variables were found to be statistically significant in both the HR and the NHR model. The average percentage deviation of OR for these 2 variables was 127%, indicating that compared with property damage, HR crashes were 127% more likely to result in fatalities than NHR crashes on average.
Document type: Article
The different versions of the original document can be found in:
Published on 01/01/2018
Volume 2018, 2018
DOI: 10.1155/2018/8537131
Licence: Other
Are you one of the authors of this document?