Abstract

Shared autonomous taxi systems (SATS) are being regarded as a promising means of improving travel flexibility. Each shared autonomous taxi (SAT) requires very precise traffic information to independently and accurately select its route. In this study, taxis were replaced with ride-sharing autonomous vehicles, and the potential benefits of utilizing collected travel-time information for path finding in the new taxi system examined. Specifically, four categories of available SATs for every taxi request were considered: currently empty, expected-empty, currently sharable, and expected-sharable. Two simulation scenarios—one based on historical traffic information and the other based on real-time traffic information—were developed to examine the performance of information use in a SATS. Interestingly, in the historical traffic information-based scenario, the mean travel time for taxi requests and private vehicle users decreased significantly in the first several simulation days and then remained stable as the number of simulation days increased. Conversely, in the real-time information-based scenario, the mean travel time was constant. As the SAT fleet size increased, the total travel time for taxi requests significantly decreased, and convergence occurred earlier in the historical information-based scenario. The results demonstrate that historical traffic information is better than real-time traffic information for path finding in SATS.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

http://downloads.hindawi.com/journals/jat/2018/8919721.xml,
http://dx.doi.org/10.1155/2018/8919721 under the license http://creativecommons.org/licenses/by/4.0
https://doaj.org/toc/0197-6729,
https://doaj.org/toc/2042-3195 under the license http://creativecommons.org/licenses/by/4.0/
http://downloads.hindawi.com/journals/jat/2018/8919721.pdf,
https://academic.microsoft.com/#/detail/2885531863
Back to Top

Document information

Published on 01/01/2018

Volume 2018, 2018
DOI: 10.1155/2018/8919721
Licence: Other

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?