'''In the spare parts supply network, there are many uncertain factories, such as unpredictable demands and changeable lead times. The spare parts shortage caused by those uncertainties may lead to severe losses. To solve the uncertainty of supply network, a determined optimization model is developed and then reformulated as a robust counterpart. In the robust model, it is only necessary to know the moment information of the uncertain parameters rather than the true probability distribution. The solution obtained by the robust model can satisfy the constraints in the worst-case, that is, feasible for any probability distribution within the moment based ambiguity set. Two moment based robust models are studied in this work. The result of the experiment indicates that the robustness of the robust model is stronger than that of the determined model and chance constraint model, and the effect of safety tolerance on the robustness is revealed by sensitivity analysis. Finally, the second order moment model is verified be superior to the first order moment model in spare parts supply network optimization.
Abstract '''In the spare parts supply network, there are many uncertain factories, such as unpredictable demands and changeable lead times. The spare parts shortage caused [...]