Floods produce enormous human and material losses every year. Evaluating their extent and severity, and especially simulating possible future scenarios can improve the response, mitigation and prevention of the effects of this phenomenon. This paper presents a methodology to reproduce the extent of floods produced by channel overflows and recorded by satellite images, identifying the maximum discharge that produced it by means of the numerical solution of the 2D shallow water equations and Differential Evolution. The objective is to minimize the difference between the extent of the flooded area recorded in the satellite images, and that obtained in the simulation by adjusting the maximum value of the flow curve used at the entrance of the channel in the solution domain. The proposal is applied to data and images corresponding to an area located south of the city of Villahermosa, in the Mexican state of Tabasco, which is an area susceptible to flooding by the overflow of the Río de la Sierra. Our proposal shows that it is possible to have more accurate information on the extent and height of water in the flooded area than that shown by the satellite, which can be used as information for prevention and mitigation plans for the adverse effects of flooding. Palabras clave: Modelado de inundaciones, gasto máximo en ríos, Iber, evolución diferencial
Abstract Floods produce enormous human and material losses every year. Evaluating their extent and severity, and especially simulating possible future scenarios can improve the response, [...]