When the Cua Dai bridge is built across the Thu Bon River, it causes a narrowing of the flow leading to scour, which seriously threatens the pier and endangers the structure. In order to limit the influence of scour the bridge, it is necessary to ensure that the scour under the bridge is within the allowable range. At the same time, it is necessary to take measures to limit and overcome the causes of scour. Therefore, the study and prediction of locations that are likely to cause scour are of great significance in choosing effective and versatile prevention solutions for works on this river section. Most of the scour formulas for bridge use the 1D average velocity to calculate; The calculated results are much different from the real distribution of flow velocity in the river. Therefore, the results of scour calculation often have big deviations from reality, especially when the river cross-section has no flats or curved rivers... The article focuses on researching scour at the bridge pier based on the two-dimensional horizontal velocity in front of the pier by using RIVER 2D model, built from the mathematical model of two horizontal flows and solved by the finite element method. The results of the paper show that the scour depth of pier by the one-dimensional (1D) average velocity gives much larger than when applying the two-dimensional horizontal velocity to calculate the scour.
Abstract When the Cua Dai bridge is built across the Thu Bon River, it causes a narrowing of the flow leading to scour, which seriously threatens the pier and endangers the structure. [...]
The suffusion susceptibility of the soil samples is evaluated through an erosion resistance index. Thanks to existing statistical analyses, the erosion resistance index is estimated from several soil parameters. In actual exploitation, the soil properties with the input parameters related to the grain distribution of the soil… vary greatly from the original design value due to the influence of many factors. One of the factors is the inherent variability. Inherent soil variability is modelled as a random field. The usual problems used to assess the suffusion susceptibility may be not give accurate results or fully evaluate the actual working ability of the ground in each case. This is one of the reasons why dams are still eroded when they are put into use. The paper aims predict erosion resistance index of the earth dam using two-dimensional (2D) Stochastics random field, modelling the initial problem, considering the variability spatial of soil properties, using the assumption of a Normal random field of soil characteristics parameters. The paper shows the predicted results of the variability spatial of erosion resistance index of Phu Vinh dam-Vietnam. Furthermore, the paper also represents the happened probability of suffusion susceptibility at the different zones in the earth dam body.
Abstract The suffusion susceptibility of the soil samples is evaluated through an erosion resistance index. Thanks to existing statistical analyses, the erosion resistance index is [...]