Practical size structural optimization problems can involve a large number of variables and constraints that meet regulatory requirements for safety and structural performance. Most optimization problems tend to find the minimum value of the objective function within a feasible set that satisfies the constraints. Among evolutionary computation techniques, genetic algorithms (GAs) have been successfully used for the optimization of structures, including lattice systems. This article proposes an automated interactive methodology for the optimization of structures based on the integration of two commercial programs: Ansys and Matlab. The developed script uses the Finite Element Method for the analysis of the structure, together with the Genetic Algorithms for the optimization. The objective of the article is to evaluate the applicability, precision and efficiency of the proposed methodology. Two numerical examples of trusses were solved with the proposed methodology, classic truss of the literature and truss with normative restrictions. The results show that the methodology is adequate for the solution of size structural optimization problems with a good precision of the results.
Abstract Practical size structural optimization problems can involve a large number of variables and constraints that meet regulatory requirements for safety and structural performance. [...]