In order to solve the problem of "gas explosion" at the end of common rubber cylinder in the process of high temperature, high pressure and gas drive operation, the rubber cylinder with new structure suitable for 51/2 in casing pipe is developed. The "M" type single rubber cylinder structure is adopted in the new structure rubber cylinder, and the "gas explosion" problem of the end gas in the low-pressure side is solved by setting the double-layer staggered slotted steel cover to prevent outburst. The finite element method is used to simulate the setting of the rubber cylinder, and the structural parameters of the new rubber cylinder are obtained by single factor analysis and orthogonal optimization, simulation test and seal test were carried out to verify the sealing performance of the rubber cylinder. According to the actual working condition, the simulation test results and seal test results show that the sealing capacity of the packer reaches 50 MPa under the temperature resistance of 120℃, and the end steel cover is fully opened to wrap the rubber cylinder, which meets the operation requirements of high temperature and high pressure gas injection packer.
Abstract In order to solve the problem of "gas explosion" at the end of common rubber cylinder in the process of high temperature, high pressure and gas drive operation, [...]
In order to reduce the number of hydraulic decoders and hydraulic control pipelines in hydraulically controlled intelligent wells, reduce production costs and improve oil recovery efficiency, the structural design of ICV control of two hydraulic control pipelines and a single hydraulic decoder for four production layers in the well was completed. By simulating the response law of downhole hydraulic signals and the stress analysis of each structure, the motion equation of the layer selection structure of the hydraulic decoder was established with 4 MPa as the unlocking pressure, and ADAMS was used to complete the dynamic simulation analysis. The variation results of displacement, angle, velocity and acceleration in the process of motion were obtained. Finally, the prototype of the hydraulic decoder was processed by stereo photo curing 3D printing equipment. Two hydraulic pumps were used to press alternately, and the selection of four layers of the hydraulic decoder was realized through two hydraulic control pipelines. The self-locking structure could realize the established function, and there was no interference and stuck between the components, which verifies the effectiveness of the design.
Abstract In order to reduce the number of hydraulic decoders and hydraulic control pipelines in hydraulically controlled intelligent wells, reduce production costs and improve oil [...]
Taking the double-layer water injection well and one graded water distributor could regulate two layers as the design and research goal, the sliding double-layer water injection distributor was designed by using the forward and reverse rotation of the driving motor to control the opening and closing of the two nozzles. The flow field of the two flow channels under different opening was analyzed by FLUENT software. The research shows that when the opening of the nozzle was less than 10mm, the maximum flow rate decreases rapidly, and when the opening exceeds 10mm, it decreases slowly. The mathematical models of flow pressure, flow velocity, and nozzle opening were obtained by data analysis and fitting. Finally, the kinematics simulation was carried out by AAMS, and the maximum friction force borne by each sealing in the movement process was obtained. The maximum torque borne in the movement process was 120.5N·m, which was less than the rated torque. The supporting motor could meet the design requirements.
Abstract Taking the double-layer water injection well and one graded water distributor could regulate two layers as the design and research goal, the sliding double-layer water injection [...]