This work presents the numeric simulation of flow in a reservoir, using the finite volume method for solver the system of equations that model the two-dimensional flow in shallow water, neglecting the tangential tensions. The solution of the system of linearized equations was obtained by computational implementation of the Gauss-Seidel iterative method. To illustrate the application of the numerical scheme in hydraulic engineering, it was considered the study of flow in an underground reservoir with internal pillars, whose flow is generated by the opening of two outlet gates. The employed code allowed the temporal analysis of the volume and the flow in the reservoir, the graphical interpretation of the investigated physical phenomenon as well as, the calculation of the precision of the model. The results obtained show the expected physical interpretation, good agreement with literature data, good precision,stability and low computational cost.
Abstract This work presents the numeric simulation of flow in a reservoir, using the finite volume method for solver the system of equations that model the two-dimensional flow in [...]