This chapter addresses the environmental and energy challenges posed by the increasing production of composite materials, particularly those reinforced with carbon and glass fibres. Current recycling technologies focused on fibre recovery, such as thermal and chemical methods, now enable the production of fibres suitable for reintegration into the value chain. The chapter details adapted textile technologies for processing these recycled fibres, covering methods from non-woven fabric production to the newest manufacturing technology of yarns and unidirectional tapes. Technologies such as carding and yarn formation are analyzed, highlighting the need for hybridization with virgin materials to enhance the mechanical properties of the final products. While current advances do not yet match the performance of virgin materials, ongoing research continues to optimize these processes, paving the way for the industrialization of more sustainable composites, with applications ranging from lightweight structures to sectors with higher mechanical requirements.
Abstract This chapter addresses the environmental and energy challenges posed by the increasing production of composite materials, particularly those reinforced with carbon and glass [...]
Muchos de los procesos de fabricación de estructuras de material compuesto se basan en grandes y costosasinstalaciones que originan procesos lentos, caros, y poco eficientes energéticamente. El preformado de tejidos de fibra seca, por ejemplo, se realiza en grandes instalaciones de hot drape forming, donde las fuentes convencionales de calentamiento basadas en lámparas infrarrojas son poco eficaces, ya que gran parte del calor suministrado se transfiere a los pesados moldes de aluminio en los que se lleva a cabo el proceso de preformado. En el contexto actual en el que es fundamental reducir la huella de carbono de cada componente, es fundamental reducir la energía necesaria en los procesos de producción y al mismo tiempo conseguir tiempos de ciclo competitivos.
En este contexto, Tecnalia lleva años trabajando en la tecnología del calentamiento resistivo directo con el fin de acelerar y optimizar los procesos de fabricación de material compuesto. La aplicación directa de una corriente sobre el material de carbono a procesar supone la ventaja de evitar el calentamiento y enfriamiento de los moldes u otros utillajes adyacentes, obteniendo los resultados de forma mucho más rápida y eficaz que con los métodos utilizados hasta ahora. En el caso, por ejemplo, del proceso de preformado de tejidos de carbono, aplicar el calentamiento solo a la preforma permite reducir los tiempos de ciclo y el consumo energético más de un 60% y 80% respectivamente. Esto supone reducir el coste del proceso relacionado con un menor consumo energético y un menor tiempo de ciclo. La calidad de las preformas obtenidas mediante el preformado resistivo es similar a la obtenida mediante la tecnología convencional hot drape forming y, además, es un proceso repetitivo que se ha validado en entorno de fabricación industrial.
En el artículo se indica también que esta tecnología de calentamiento resistivo directo no solo es aplicable en procesos de preformado de carbono, sino que también podría emplearse potencialmente en otros procesos de fabricación de componentes de material compuesto.
Abstract Muchos de los procesos de fabricación de estructuras de material compuesto se basan en grandes y costosasinstalaciones que originan procesos lentos, caros, y poco eficientes [...]
This technical report addresses the study of composite materials with natural fibers as reinforcement. The properties, applications and manufacturing processes of these materials are explored, highlighting their relevance in various industries. The environmental and sustainable benefits associated with the use of natural fibers instead of traditional materials are analyzed, as well as the current issues to overcome.
Abstract This technical report addresses the study of composite materials with natural fibers as reinforcement. The properties, applications and manufacturing processes of these materials [...]
Spain, holding a prominent position in Europe's composites industry and notably in aviation composites, faces significant waste management challenges within its 500-strong composite company sector. As it shifts towards the Circular Economy to enhance competitiveness and resource efficiency, Spain adheres to the EU's waste hierarchy, emphasizing the critical need for waste minimization and the reuse of materials. This transition is particularly vital given the environmental impact of disposing of polymer-matrix composites, especially cured composites, with Europe generating roughly 400,000 tonnes of thermoset composite waste annually, a substantial portion of which is from Spain.
This study delves into the reuse and repurposing of polymer composites, promoting their integration within the Circular Economy to preserve material integrity and value. It showcases innovative repurposing projects in Spain and across Europe, such as transforming wind turbine blades into materials for construction, which demonstrates the feasibility of extending these materials' lifecycles. These efforts align with sustainability goals aimed at waste reduction and resource conservation. However, challenges persist, including matching waste volume and condition with market demands and scaling these practices effectively. The concept of structural re-use, turning cured composite waste into high-value, reusable products, highlights the potential of merging reuse and recycling strategies. Innovative approaches to reuse not only mitigate sustainability challenges but also foster economically viable solutions, marking a significant stride towards sustainable and efficient resource utilization in the composites sector.
Abstract Spain, holding a prominent position in Europe's composites industry and notably in aviation composites, faces significant waste management challenges within its 500-strong [...]
Auxiliary materials are essential elements for polymer composites manufacturing. Each of these elements performs a specific function and requires partícular characteristics depending on the process parameters.
They are generally single-use materials (consumables) and thermoplastics nature, so they could be recovered and recycled. However, due to the manufacturing process of composite parts, this recycling becomes complex due to contamination by resin and fibers and the heterogeneity of the different auxiliary materials.
Because of this, one of the alternatives to reduce the consume of these elements and minimize their environmental impact is to use of reusable auxiliary materials. Currently, there are commercial solutions based on silicones. This alternative must be evaluated for each case, considering parameters such as the number of parts to be manufactured or their size and geometry.
Abstract Auxiliary materials are essential elements for polymer composites manufacturing. Each of these elements performs a specific function and requires partícular characteristics [...]
In the current context of transitioning towards a circular economy and the digital age, the design of products based on composite materials requires a rethinking of decision-making processes. It is necessary to incorporate methodologies that include sustainability concepts, from selecting materials that can be revalorized to designing a product so that segregation at the end of its useful life is as simple as possible, always ensuring the technical, functional, and safety requirements of the products. This presents a complex scenario that will be elaborated on in the following sections:
Abstract In the current context of transitioning towards a circular economy and the digital age, the design of products based on composite materials requires a rethinking of decision-making [...]
. C.Elizetxea, . S.García-Arrieta, A. Calle, M. Manchado, R. Márquez, A. Bethencourt
libro-blanco-materiales-compuestos (2024). 39
Abstract
One of the main challenges currently faced by the composite materials sector is to ensure its sustainability, both at the level of the raw materials used, the production means necessary for its transformation, as well as its management and treatment. at the end of its useful life.
Especially critical is the situation of thermostable composite materials, widely used in structural applications due to their excellent performance/weight ratio. There are different fields of research, oriented towards the search for more sustainable alternatives for these matrices so that these high mechanical performances continue to be guaranteed and that they can be transformed by conventional manufacturing processes.
Reactive thermoplastic resins are a sustainable alternative for the manufacture of recyclable, weldable and processable structural composite components by conventional manufacturing technologies (Infusion, RTM. Pultrusion, Fillament Winding)
Abstract One of the main challenges currently faced by the composite materials sector is to ensure its sustainability, both at the level of the raw materials used, the production means [...]