COMPLAS 2021 is the 16th conference of the COMPLAS Series.
The COMPLAS conferences started in 1987 and since then have become established events in the field of computational plasticity and related topics. The first fifteen conferences in the COMPLAS series were all held in the city of Barcelona (Spain) and were very successful from the scientific, engineering and social points of view. We intend to make the 16th edition of the conferenceanother successful edition of the COMPLAS meetings.
The objectives of COMPLAS 2021 are to address both the theoretical bases for the solution of nonlinear solid mechanics problems, involving plasticity and other material nonlinearities, and the numerical algorithms necessary for efficient and robust computer implementation. COMPLAS 2021 aims to act as a forum for practitioners in the nonlinear structural mechanics field to discuss recent advances and identify future research directions.
Scope
COMPLAS 2021 is the 16th conference of the COMPLAS Series.
R. Quinteros-Mayne, I. de Artega Jorda, J. Cabrero
eccomas2022.
Abstract
Wood is a heterogeneous material, whose morphology and topology make the prediction of its mechanical behavior complex under different boundary conditions [1-3]. In this way, different constitutive models with different scale lengths have been developed since the middle of the 20th century to predict the behavior and mechanics of wood damage [3-8]. However, there is still no agreement on which constitutive model or scale length allows for a more consistent representation of behavior and damage mechanics mentioned. This article seeks to contribute to the discussion a new constitutive model for the analysis of the behavior and mechanics of wood damage. To do this, we present the implementation in a user subroutine for Abaqus [9], of a viscoelastic constitutive model based on the generalized well criterion for the elastic regime with a macroscale model [10] [11]; the onset and the damage evolution law are analyzed under a mesoscale model based on the progressive degradation of cracking parallel and perpendicular to the fiber [12-14]
Abstract Wood is a heterogeneous material, whose morphology and topology make the prediction of its mechanical behavior complex under different boundary conditions [1-3]. In this way, [...]
Actuation devices made of dielectric elastomers are prone to compression induced wrinkling instabilities, which can adversely affect their performance and may lead to device failure. On the other hand, wrinkles can be used constructively in certain applications demanding a controlled alternation of the surface morphology. The idea of taut states and the natural width under simple tension plays an important role in the analysis of compression generated instability (wrinkling). In case of electrically driven DE membranes, the domain of taut states in the plane of principal stretches is influenced substantially by the applied voltage and the film's constitutive properties. In the recent past, there has been an increasing interest in exploiting anisotropy in the material behavior of dielectric elastomers for improving their actuation performance. Spurred with these ongoing efforts, this paper presents a continuum mechanics based electromechanical model for predicting the thresholds on the domain of taut states of transversely isotropic planar dielectric elastomers. The developed analytical framework uses an amended energy function that accounts for the electromechanical coupling for a class of incompressible transversely isotropic dielectric membranes. The required expressions for the total Cauchy stress tensor and the associated principal stress components are evaluated utilizing the amended energy function. Finally, the concept of natural width under simple tension is implemented to obtained the nonlinear coupled electromechanical equation that evaluates the associated taut states domain of the transversely isotropic planar dielectric elastomers. Our results indicate that the extent of taut domain can be controlled by modifying the level and the principal direction of the transverse isotropy. The taut states domain for a particular level of applied electric field increases with increase in the anisotropy parameter, while the taut domains depleted with the increase in fiber orientations from 00to 900for an applied level of electrical loading. The fiber-reinforced wrinkle-tunable surfaces can be effectively designed and developed using the underlying analytical framework and the trends obtained in this study.
Abstract Actuation devices made of dielectric elastomers are prone to compression induced wrinkling instabilities, which can adversely affect their performance and may lead to device [...]
We propose a new variational formulation for large deformations in dynamical systems made of 3D-fiber-reinforced composites. The formulation emanates from the dynamic variational approach based on the principle of virtual power. The use of higher-order gradient theory along with multi-field mixed-finite element method enables us to model the fiber-bending stiffness in fiber reinforced composites for numerical simulations accurately. Our proposed model capture higher-order energy contributions exhibited by fibers that influence the fiber-bending curvature, and consequently the fiber-bending stiffness behaviour. For this, we introduce a higher-order gradient of the deformation mapping as an independent field in the internal energy functional formulation. Along with the energy-momentum scheme, our new time integrator makes possible to perform long-term dynamic simulations with larger time steps and efficient CPU-time. We demonstrate our model using transient dynamical simulations on thre geometrical examples that exhibit hyperelastic, transversely isotropic, polyconvex gradient material behaviour. In the first example, a cantilever beam is self-excited due to its body weight, in the second, a L-shaped block tumbles free in the ambient space after an initial loading phase and in the third a turbine rotor is rotated due to hydrodynamic pressure. It is observed that our model conserves total momenta and total energy and preserves their time evolution in all these examples along with spatial and temporal convergence.
Abstract We propose a new variational formulation for large deformations in dynamical systems made of 3D-fiber-reinforced composites. The formulation emanates from the dynamic variational [...]
The focus of this contribution is laid on different aspects and instances related to porous media fracture under non-isothermal conditions. This includes the extreme case of fracturing due to pore-fluid freezing, where the micro-cryo-suction plays an important role in generating the required stresses for crack onset. This also includes studying the instances related to hydraulic fracturing and heat transfer under non-isothermal conditions. In all cases, the continuum mechanical modeling of the induced fractures is based on macroscopic porous media mechanics together with the phase-field method (PFM) for fracture modeling. For the micro-cryo-suction in saturated porous media, the water freezing is treated as a phase-change process. This is modeled using a different phase-field approach, in which the thermal energy derives the phase change and, thus, leads to the occurrence of micro-cryo-suction. Two numerical examples are presented to show the effectiveness of the proposed modeling frameworks.
Abstract The focus of this contribution is laid on different aspects and instances related to porous media fracture under non-isothermal conditions. This includes the extreme case [...]
V. Cool, F. Naets, L. Van Belle, W. Desmet, E. Deckers
eccomas2022.
Abstract
Periodic structures such as metamaterials and phononic crystals hold potential as promising compact and lightweight solutions for noise and/or vibration attenuation in targeted frequency ranges. The performance of these structures is usually investigated by means of dispersion curves. The input for dispersion curve computations is often a finite element model of the corresponding unit cell. Nowadays, the vibration and noise attenuation of the periodic structures are generally tackled as separate problems and their performance is investigated with either structural or acoustic dispersion curves, respectively. Recently, vibro-acoustic unit cell models have come to the fore which can exhibit simultaneous structural and acoustic stopbands. However, the vibro-acoustic coupling inside the unit cell is usually not taken into account during the dispersion curve computations. To consider this coupling during their performance assessment, the computation of vibro-acoustic dispersion curves is required. Although these dispersion curves provide valuable information, the associated computational cost rapidly increases with unit cell model size. Model order reduction techniques are important enablers to overcome this high cost. In this work, the Bloch mode synthesis (BMS) and generalized BMS (GBMS) unit cell model order reduction techniques are extended to be applicable for 2D and 3D periodic vibro-acoustic systems. Through a verification case, the methodologies are shown to enable a strongly reduced dispersion curve calculation time while maintaining accurate predictions.
Abstract Periodic structures such as metamaterials and phononic crystals hold potential as promising compact and lightweight solutions for noise and/or vibration attenuation in targeted [...]
A corotational mixed flat shell element for the geometrically nonlinear analysis of laminated composite structures is presented. The stress interpolation is derived from the linear elastic solution for symmetric composite materials.Displacement and rotation fields are only assumed along the contour of the element. As such, all the operators are efficiently obtained through analytical contour integration. The geometrical nonlinearity is introduced by means of a corotational formulation. The proposed finite element, named MISS-4c, proves to be locking free and shows no rank defectiveness. A multimodal Koiter's algorithm is used to obtain the initial postbuckling response. Results show good accuracy and high convergence rate in the geometrically nonlinear analysis of composite shell structures.
Abstract A corotational mixed flat shell element for the geometrically nonlinear analysis of laminated composite structures is presented. The stress interpolation is derived from the [...]
The development and optimization of Micro electro-mechanical systems (MEMS) devices, due to their small size scale, require testing and precise characterization. As an example, over etch, which is the deviation between the designed masks and the effective dimensions of the suspended parts, strongly influences the performances of MEMS; therefore, to predict the correct functioning of the device its actual value must be carefully identified. In this work, we propose an efficient, time-saving tool to identify fabrication imperfections in MEMS devices. In particular, we replace the complex geometry of a MEMS mechanical filter with an equivalent homogeneous medium, whose linear-elastic effective properties are evaluated employing twoscale asymptotic homogenization and we identify the over etch by minimizing the relative error between experimental data and corresponding predictions obtained for different combinations of over etch.
Abstract The development and optimization of Micro electro-mechanical systems (MEMS) devices, due to their small size scale, require testing and precise characterization. As an example, [...]
R. Lazo-Molina, C. Guzmán, J. Pina, E. Saavedra Flores, S. Yanez
eccomas2022.
Abstract
Some of the most frequently observed phenomena in structural materials are creep and relaxation. Both are associated with time-dependent behavior and dissipative rheological variables. In the case of wood, long-term creep can produce excessive deformation and instability problems by magnifying short-term deflections. Also, wood presents changes in its mechanical properties due to its hygroscopy, so that moisture appears as an important parameter to be considered. A priori, it is known that the moisture content in wood cells and the angle of microfibrils are parameters that directly affect the overall cell stiffness. With this information, material physics hypotheses can be elaborated to develop a constitutive model in large deformations to predict phenomena such as creep and relaxation in the medium and/or long term. The microstructure of the cell wall can be represented through a model of fiber-reinforced composite material originally developed for biomaterials such as arteries and fibrous tissues. Where the anisotropic character is conferred by the distribution of the fibers within the isotropic matrix of the material. This work aims to adapt these models to represent the mechanical behavior of the wood cell with faithful representation of its microstructure. FEniCS is used for the numerical implementation of the material. In this paper the validations, current status, conclusions, and perspectives of this research are presented.
Abstract Some of the most frequently observed phenomena in structural materials are creep and relaxation. Both are associated with time-dependent behavior and dissipative rheological [...]
For the simulation and model-based control of soft robots accurate models are required. In this contribution the simulation of a simple soft robot with the cosserat rod theory is examined for both linear and nonlinear material models. The soft robot is fabricated out of silicone. Thereby stiffness and damping properties are investigated. In addition to the achievable accuracy, the computation time is also examined.
Abstract For the simulation and model-based control of soft robots accurate models are required. In this contribution the simulation of a simple soft robot with the cosserat rod theory [...]
C. Almeida, J. Cardoso, P. Coelho, A. Velhinho, J. Xavier, J. Borges
eccomas2022.
Abstract
Developing a new generation of multifunctional metamaterials with unusual thermoelastic properties enables a wide range of industrial applications, particularly in the aerospace industry. However, obtaining metamaterials with target properties by the systematic design of their microstructure and architecture remains a major challenge to this day. Topology Optimization (TO) is a powerful tool that can be used to develop the so-called anepectic metamaterials that combine both negative Poisson's Ratio (NPR) and negative thermal expansion (NTE). Here, an overview of the existing contributions in the literature regarding such metamaterials is presented. A Finite Element (FE) model for an anepectic microstructure is presented here for the purpose of simulating in silico the experimental results obtained in previous works. It is noted that scarce contributions resort to TO to design such metamaterials and even fewer present experimental validation. The present work presents a state of the art of anepectic metamaterials and emphasizes thus the importance of the engineering-cycle completion, i.e., starting with the systematic and optimal design of metamaterials and ending up in prototype fabrication and its verification.
Abstract Developing a new generation of multifunctional metamaterials with unusual thermoelastic properties enables a wide range of industrial applications, particularly in the aerospace [...]