P. Ryzhakov, J. Cotela, R. Rossi, E. Oñate. A two-step monolithic method for the efficient simulation of incompressible flows. Int. J. Numer. Meth. Fluids 74(12) (2014) DOI 10.1002/fld.3881
P. Ryzhakov, A. Jarauta. An embedded approach for immiscible multi-fluid problems. Int. J. Numer. Meth. Fluids 81(6) (2015) DOI 10.1002/fld.4190
S. Lee, H. Seong, J. Kang. Flow-induced vibration of a radial gate at various opening heights. Engineering Applications of Computational Fluid Mechanics 12(1) (2018) DOI 10.1080/19942060.2018.1479662
N. bin Zakaria, M. Ngali, A. Rivai. Review on Fluid Structure Interaction Solution Method for Biomechanical Application. AMM 660 (2014) DOI 10.4028/www.scientific.net/amm.660.927
K. KAMRAN, R. ROSSI, E. OÑATE, S. IDELSOHN. A COMPRESSIBLE LAGRANGIAN FRAMEWORK FOR MODELING THE FLUID–STRUCTURE INTERACTION IN THE UNDERWATER IMPLOSION OF AN ALUMINUM CYLINDER. Math. Models Methods Appl. Sci. 23(02) (2013) DOI 10.1142/s021820251340006x
N. MITSUME, S. YOSHIMURA, K. MUROTANI, T. YAMADA. MPS–FEM PARTITIONED COUPLING APPROACH FOR FLUID–STRUCTURE INTERACTION WITH FREE SURFACE FLOW. Int. J. Comput. Methods 11(04) (2014) DOI 10.1142/s0219876213501016
M. Ogino, T. Iwama, M. Asai. Development of a Partitioned Coupling Analysis System for Fluid–Structure Interactions Using an In-House ISPH Code and the Adventure System. Int. J. Comput. Methods 16(04) (2019) DOI 10.1142/s0219876218430090
M. Abas, R. Abdul-Rahman. Finite Element Method for Fluid Structure Interaction with hp-Adaptivity. IJCTE DOI 10.7763/ijcte.2013.v5.771
H. Sugioka. Unified Calculation Method that Treats a Fluid as an Elastic Material Based on the Finite Element Method. J. Phys. Soc. Jpn. 84(10) DOI 10.7566/jpsj.84.104601
M. Zhu, M. Scott. Improved fractional step method for simulating fluid-structure interaction using the PFEM. Int. J. Numer. Meth. Engng 99(12) (2014) DOI 10.1002/nme.4727
A. Franci, E. Oñate, J. Carbonell. On the effect of the bulk tangent matrix in partitioned solution schemes for nearly incompressible fluids. Int. J. Numer. Meth. Engng 102(3-4) (2014) DOI 10.1002/nme.4839
A. Franci, E. Oñate, J. Carbonell. Velocity-based formulations for standard and quasi-incompressible hypoelastic-plastic solids. Int. J. Numer. Meth. Engng 107(11) (2016) DOI 10.1002/nme.5205
M. Zhu, M. Scott. Unified fractional step method for Lagrangian analysis of quasi-incompressible fluid and nonlinear structure interaction using the PFEM. Int. J. Numer. Meth. Engng 109(9) (2016) DOI 10.1002/nme.5321
G. Wang, Q. Wu, B. Huang. Dynamics of cavitation–structure interaction. Acta Mech. Sin. 33(4) (2017) DOI 10.1007/s10409-017-0685-4
M. Bukac, B. Muha. Stability and Convergence Analysis of the Extensions of the Kinematically Coupled Scheme for the Fluid-Structure Interaction. SIAM J. Numer. Anal. 54(5) DOI 10.1137/16m1055396
F. Mossaiby, R. Rossi, P. Dadvand, S. Idelsohn. OpenCL-based implementation of an unstructured edge-based finite element convection-diffusion solver on graphics hardware. Int. J. Numer. Meth. Engng 89(13) (2011) DOI 10.1002/nme.3302
P. Ryzhakov, E. Oñate, R. Rossi, S. Idelsohn. Improving mass conservation in simulation of incompressible flows. Int. J. Numer. Meth. Engng 90(12) (2012) DOI 10.1002/nme.3370
G. Yoon, C. Min, S. Kim. A Stable and Convergent Hodge Decomposition Method for Fluid–Solid Interaction. J Sci Comput 76(2) (2018) DOI 10.1007/s10915-017-0638-x
S. Rodolfo Idelsohn, N. Marcelo Nigro, J. Marcelo Gimenez, R. Rossi, J. Marcelo Marti. A fast and accurate method to solve the incompressible Navier‐Stokes equations. Engineering Computations 30(2) DOI 10.1108/02644401311304854
M. Urrecha, I. Romero. Un método sin malla y estabilizado para la resolución de las ecuaciones lagrangianas de los fluidos newtonianos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 32(2) DOI 10.1016/j.rimni.2015.02.006
A. Larese, R. Rossi, E. Oñate, M. Toledo, R. Morán, H. Campos. Numerical and Experimental Study of Overtopping and Failure of Rockfill Dams. Int. J. Geomech. 15(4) DOI 10.1061/(asce)gm.1943-5622.0000345
S. Cherif, M. Ouissi. Free Vibration Analysis of a Liquid in a Circular Cylindrical Rigid Tank Using the Hierarchical Finite Element Method. Lat. Am. j. solids struct. 13(7) DOI 10.1590/1679-78251774
A. Franci. Unified Stabilized Formulation for Quasi-incompressible Materials. (2016) DOI 10.1007/978-3-319-45662-1_3
Z. Zhang, D. Zingg. Efficient Monolithic Solution Algorithm for High-Fidelity Aerostructural Analysis and Optimization. AIAA Journal 56(3) DOI 10.2514/1.j056163
E. Oñate, S. Idelsohn, M. Celigueta, R. Rossi, J. Marti, J. Carbonell, P. Ryzhakov, B. Suárez. Advances in the Particle Finite Element Method (PFEM) for Solving Coupled Problems in Engineering. (2011) DOI 10.1007/978-94-007-0735-1_1
H. Zheng, R. Shioya, N. Mitsume. Large-Scale Parallel Simulation of Coastal Structures Loaded by Tsunami Wave Using FEM and MPS Method. JASSE 5(1) DOI 10.15748/jasse.5.1
N. Mitsume, S. Yoshimura, K. Murotani, T. Yamada. Explicitly represented polygon wall boundary model for the explicit MPS method. Comp. Part. Mech. 2(1) (2015) DOI 10.1007/s40571-015-0037-8
P. Ryzhakov. An axisymmetric PFEM formulation for bottle forming simulation. Comp. Part. Mech. 4(1) (2016) DOI 10.1007/s40571-016-0114-7
M. Zhu, M. Scott. Direct differentiation of the quasi-incompressible fluid formulation of fluid–structure interaction using the PFEM. Comp. Part. Mech. 4(3) (2016) DOI 10.1007/s40571-016-0123-6
A. Franci, M. Cremonesi. On the effect of standard PFEM remeshing on volume conservation in free-surface fluid flow problems. Comp. Part. Mech. 4(3) (2016) DOI 10.1007/s40571-016-0124-5
A. Timalsina, G. Hou, J. Wang. Computing Fluid-Structure Interaction by the Partitioned Approach with Direct Forcing. Commun. Comput. Phys. 21(1) (2016) DOI 10.4208/cicp.080815.090516a
G. Hou, J. Wang, A. Layton. Numerical Methods for Fluid-Structure Interaction — A Review. Commun. comput. phys. 12(2) (2015) DOI 10.4208/cicp.291210.290411s
H. Yeo, H. Ki. A Unified Momentum Equation Approach for Computing Flow-Induced Stresses in Structures with Arbitrarily-Shaped Stationary Boundaries. Commun. Comput. Phys. 22(1) (2017) DOI 10.4208/cicp.oa-2016-0035
G. Ateshian, J. Shim, S. Maas, J. Weiss. Finite Element Framework for Computational Fluid Dynamics in FEBio. 140(2) (2018) DOI 10.1115/1.4038716
A. Abas, R. Abdul-Rahman. Adaptive FEM with Domain Decomposition Method for Partitioned-Based Fluid–Structure Interaction. Arab J Sci Eng 41(2) (2015) DOI 10.1007/s13369-015-1708-8
M. Verstraete, B. Roccia, D. Mook, S. Preidikman. A co-simulation methodology to simulate the nonlinear aeroelastic behavior of a folding-wing concept in different flight configurations. Nonlinear Dyn 98(2) (2019) DOI 10.1007/s11071-019-05234-9
G. McNunn, K. Bryden. A Purposed Model Coupling Framework for the Rapid Assembly of Complex System Simulations within an Integrated Computational Environment. (2014) DOI 10.2514/6.2014-0297
N. Joseph, R. Carrese, P. Marzocca. A Physics-Based Projection Algorithm for Fluid Structure Interaction Simulations. (2019) DOI 10.2514/6.2019-0487
K. Takizawa, T. Tezduyar. Computational Methods for Parachute Fluid–Structure Interactions. Arch Computat Methods Eng 19(1) (2012) DOI 10.1007/s11831-012-9070-4
K. Takizawa, Y. Bazilevs, T. Tezduyar. Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling. Arch Computat Methods Eng 19(2) (2012) DOI 10.1007/s11831-012-9071-3
Y. Wu, B. Yang. An Overview of Numerical Methods for Incompressible Viscous Flow with Moving Particles. Arch Computat Methods Eng 26(4) (2018) DOI 10.1007/s11831-018-9277-0
T. Wang, R. Wüchner, K. Bletzinger. Assessment and practical application of mapping algorithms for beam elements in computational FSI. European Journal of Computational Mechanics 25(5) (2016) DOI 10.1080/17797179.2016.1249732
K. Takizawa, K. Schjodt, A. Puntel, N. Kostov, T. Tezduyar. Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Comput Mech 50(6) (2012) DOI 10.1007/s00466-012-0760-4
K. Takizawa, M. Fritze, D. Montes, T. Spielman, T. Tezduyar. Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity. Comput Mech 50(6) (2012) DOI 10.1007/s00466-012-0761-3
A. Larese, R. Rossi, E. Oñate, S. Idelsohn. A coupled PFEM–Eulerian approach for the solution of porous FSI problems. Comput Mech 50(6) (2012) DOI 10.1007/s00466-012-0768-9