A. Selvadurai. On nonclassical analytical solutions for advective transport problems. Water Resour. Res. 44(5) (2008) DOI 10.1029/2007wr006312
E. Oñate, A. Valls, J. García. Computation of turbulent flows using a finite calculus–finite element formulation. Int. J. Numer. Meth. Fluids 54(6-8) (2007) DOI 10.1002/fld.1476
P. Nadukandi, E. Oñate, J. Garcia. Analysis of a consistency recovery method for the 1D convection–diffusion equation using linear finite elements. Int. J. Numer. Meth. Fluids 57(9) DOI 10.1002/fld.1863
E. Ortega, E. Oñate, S. Idelsohn. A finite point method for adaptive three-dimensional compressible flow calculations. Int. J. Numer. Meth. Fluids 60(9) DOI 10.1002/fld.1892
E. Oñate, P. Nadukandi, S. Idelsohn, J. García, C. Felippa. A family of residual-based stabilized finite element methods for Stokes flows. Int. J. Numer. Meth. Fluids 65(1-3) (2010) DOI 10.1002/fld.2468
E. Oñate, A. Franci, J. Carbonell. Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses. Int. J. Numer. Meth. Fluids 74(10) (2014) DOI 10.1002/fld.3870
M. Kouhi, E. Oñate. A stabilized finite element formulation for high-speed inviscid compressible flows using finite calculus. Int. J. Numer. Meth. Fluids 74(12) (2014) DOI 10.1002/fld.3877
C. Jiang, Z. Zhang, X. Han, G. Liu, T. Lin. A cell-based smoothed finite element method with semi-implicit CBS procedures for incompressible laminar viscous flows. Int J Numer Meth Fluids 86(1) (2017) DOI 10.1002/fld.4406
I. de-Pouplana, E. Oñate. A FIC-based stabilized mixed finite element method with equal order interpolation for solid-pore fluid interaction problems. Int. J. Numer. Anal. Meth. Geomech. 41(1) (2016) DOI 10.1002/nag.2550
L. Monforte, P. Navas, J. Carbonell, M. Arroyo, A. Gens. Low‐order stabilized finite element for the full Biot formulation in soil mechanics at finite strain. Int J Numer Anal Methods Geomech 43(7) (2019) DOI 10.1002/nag.2923
K. Xia, K. Zhang. A multiscale finite element formulation for axisymmetric elastoplasticity with volumetric locking. Int. J. Numer. Anal. Meth. Geomech. DOI 10.1002/nag.853
M. Preisig, J. Prévost. Stabilization procedures in coupled poromechanics problems: A critical assessment. Int. J. Numer. Anal. Meth. Geomech. 35(11) (2010) DOI 10.1002/nag.951
S. Subramanian, U. Kumar. Augmenting numerical stability of the Galerkin finite element formulation for electromagnetic flowmeter analysis. 10(4) DOI 10.1049/iet-smt.2015.0159
S. Subramanian, U. Kumar. Stable Galerkin finite-element scheme for the simulation of problems involving conductors moving rectilinearly in magnetic fields. 10(8) DOI 10.1049/iet-smt.2016.0162
C. Huang, D. Zhou, Y. Bao. A semi-implicit three-step method based on SUPG finite element formulation for flow in lid driven cavities with different geometries. J. Zhejiang Univ. Sci. A 12(1) (2011) DOI 10.1631/jzus.a1000098
P. Selvadurai. Transport in porous media. European Journal of Environmental and Civil Engineering 14(8-9) (2011) DOI 10.1080/19648189.2010.9693275
E. OÑATE, S. IDELSOHN, F. DEL PIN, R. AUBRY. THE PARTICLE FINITE ELEMENT METHOD — AN OVERVIEW. Int. J. Comput. Methods 01(02) (2012) DOI 10.1142/s0219876204000204
C. BUACHART, W. KANOK-NUKULCHAI, E. ORTEGA, E. OÑATE. A SHALLOW WATER MODEL BY FINITE POINT METHOD. Int. J. Comput. Methods 11(01) (2013) DOI 10.1142/s0219876213500473
C. Huang, B. Yan, D. Zhou, J. Xu. Stabilized finite element technique and its application for turbulent flow with high Reynolds number. Wind and Structures An International Journal 14(5) DOI 10.12989/was.2011.14.5.465
A. Sapotnick, U. Nackenhorst. A combined FIC-TDG finite element approach for the numerical solution of coupled advection-diffusion-reaction equations with application to a bioregulatory model for bone fracture healing. Int. J. Numer. Meth. Engng 92(3) (2012) DOI 10.1002/nme.4338
P. Nithiarasu. On boundary conditions of the characteristic based split (CBS) algorithm for fluid dynamics. Int. J. Numer. Meth. Engng. 54(4) (2002) DOI 10.1002/nme.434
A. Franci, E. Oñate, J. Carbonell. On the effect of the bulk tangent matrix in partitioned solution schemes for nearly incompressible fluids. Int. J. Numer. Meth. Engng 102(3-4) (2014) DOI 10.1002/nme.4839
C. Ladubec, R. Gracie. Stabilized finite element methods for vertically averaged multiphase flow for carbon sequestration. Int. J. Numer. Meth. Engng 111(8) (2017) DOI 10.1002/nme.5480
C. Jiang, Z. Zhang, X. Han, G. Liu, G. Gao, T. Lin. A quasi-implicit characteristic-based penalty finite-element method for incompressible laminar viscous flows. Int J Numer Methods Eng 114(2) (2018) DOI 10.1002/nme.5738
H. Hernández, T. Massart, R. Peerlings, M. Geers. A stabilization technique for coupled convection-diffusion-reaction equations. Int J Numer Methods Eng 116(1) (2018) DOI 10.1002/nme.5914
M. Yang, S. Lu. A mixed DOF collocation method for elastic problems in heterogeneous structure. Int J Numer Methods Eng 119(11) (2019) DOI 10.1002/nme.6087
B. Boroomand, B. Khalilian. On using linear elements in incompressible plane strain problems: a simple edge based approach for triangles. Int. J. Numer. Meth. Engng. 61(10) (2004) DOI 10.1002/nme.1121
B. Boroomand, A. Tabatabaei, E. Oñate. Simple modifications for stabilization of the finite point method. Int. J. Numer. Meth. Engng. 63(3) (2005) DOI 10.1002/nme.1278
J. Rojek, E. Oñate, R. Taylor. CBS-based stabilization in explicit solid dynamics. Int. J. Numer. Meth. Engng 66(10) DOI 10.1002/nme.1689
P. Nithiarasu, R. Codina, O. Zienkiewicz. The Characteristic-Based Split (CBS) scheme—a unified approach to fluid dynamics. Int. J. Numer. Meth. Engng 66(10) DOI 10.1002/nme.1698
A. Sadeghirad, S. Mohammadi. Equilibrium on line method (ELM) for imposition of Neumann boundary conditions in the finite point method (FPM). Int. J. Numer. Meth. Engng 69(1) (2006) DOI 10.1002/nme.1755
F. Ilinca, J. Hétu. A new stabilized finite element method for reaction-diffusion problems: The source-stabilized Petrov-Galerkin method. Int. J. Numer. Meth. Engng 75(13) DOI 10.1002/nme.2324
J. Garcia-Espinosa, A. Valls, E. Oñate. ODDLS: A new unstructured mesh finite element method for the analysis of free surface flow problems. Int. J. Numer. Meth. Engng 76(9) DOI 10.1002/nme.2348
E. Oñate, R. Rossi, S. Idelsohn, K. Butler. Melting and spread of polymers in fire with the particle finite element method. Int. J. Numer. Meth. Engng DOI 10.1002/nme.2731
E. Oñate, S. Idelsohn, C. Felippa. Consistent pressure Laplacian stabilization for incompressible continua via higher-order finite calculus. Int. J. Numer. Meth. Engng. 87(1-5) (2010) DOI 10.1002/nme.3021
J. Reichenbach, N. Aksel. Lösungsverhalten der FEM für das ebene Couette- und Poiseuille-Problem eines Oldroyd-B Fluides. Z. angew. Math. Mech. 79(S1) (2011) DOI 10.1002/zamm.19990791350
O. Zienkiewicz, P. Nithiarasu, R. Codina, M. Vázquez, P. Ortiz. The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems. Int. J. Numer. Meth. Fluids 31(1) (2001) DOI 10.1002/(sici)1097-0363(19990915)31:1<359::aid-fld984>3.0.co;2-7
E. Oñate, M. Celigueta, S. Idelsohn. Modeling bed erosion in free surface flows by the particle finite element method. Acta Geotech. 1(4) (2006) DOI 10.1007/s11440-006-0019-3
E. Oñate, J. García-Espinosa, S. Idelsohn, B. Serván-Camas. Ship Hydrodynamics. (2017) DOI 10.1002/9781119176817.ecm2070
E. Oñate, P. Cendoya, J. Miquel. Non‐linear explicit dynamic analysis of shells using the BST rotation‐free triangle. Engineering Computations 19(6) DOI 10.1108/02644400210439119
E. Oñate, R. Taylor, O. Zienkiewicz, J. Rojek. A residual correction method based on finite calculus. Engineering Computations 20(5/6) DOI 10.1108/02644400310488790
B. Chetverushkin. Kinetic schemes and quasi-gas-dynamic system of equations. 20(4) DOI 10.1515/156939805775122253
W. WANG, X. LI, X. HAN. RHEOLOGICAL BEHAVIOR OF POM-POM MOLECULES THROUGH PLANAR CONTRACTION FLOW. Acta Polymerica Sinica 010(3) DOI 10.3724/sp.j.1105.2010.00292
D. Garzón-Alvarado, A. Ramírez-Martínez, C. Duque Daza. Solución en dominios cuadrados de ecuaciones de difusión-convección mediante elementos finitos estocásticos espectrales en conjunto con el método de Petrov Galerkin en contracorriente. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 29(4) DOI 10.1016/j.rimni.2013.07.001
A. German, J. García-Espinosa, M. Espino, M. Maidana. Simulation of Water Circulation over a Model of a Submarine Canyon by Using FIC-FEM Numerical Model. J. Waterway, Port, Coastal, Ocean Eng. 138(1) DOI 10.1061/(asce)ww.1943-5460.0000105
E. Oñate, S. Idelsohn, M. Celigueta, B. Suárez. The Particle Finite Element Method (PFEM). An Effective Numerical Technique for Solving Marine, Naval and Harbour Engineering Problems. DOI 10.1007/978-94-007-6143-8_4
A. Sadeghirad, I. Kani. Modified equilibrium on line method for imposition of Neumann boundary conditions in meshless collocation methods. Commun. Numer. Meth. Engng. 25(2) DOI 10.1002/cnm.1114
H. Geijselaers, J. Huétink. A second order discontinuous Galerkin method for advection on unstructured triangular meshes. Commun. Numer. Meth. Engng. 19(4) (2003) DOI 10.1002/cnm.588
B. Chetverushkin. Resolution limits of continuous media mode and their mathematical formulations. Math Models Comput Simul 5(3) (2013) DOI 10.1134/s2070048213030034
A. Franci. Unified Stabilized Formulation for Quasi-incompressible Materials. (2016) DOI 10.1007/978-3-319-45662-1_3
E. Oñate, S. Idelsohn, M. Celigueta, R. Rossi, S. Latorre. Possibilities of the Particle Finite Element Method in Computational Mechanics. DOI 10.1007/978-3-642-05241-5_15
M. Wilkinson, A. Meade. Radial Basis Function Artificial Neural-Network-Inspired Numerical Solver. Journal of Aerospace Information Systems 13(6) DOI 10.2514/1.i010196
E. Oñate, S. Idelsohn, M. Celigueta, R. Rossi, J. Marti, J. Carbonell, P. Ryzhakov, B. Suárez. Advances in the Particle Finite Element Method (PFEM) for Solving Coupled Problems in Engineering. (2011) DOI 10.1007/978-94-007-0735-1_1
A. Selvadurai. On Recent Analytical Results for Advective Transport in Fluid-Saturated Porous Media. DOI 10.1007/978-3-540-35724-7_22
E. Oñate, M. Celigueta, S. Latorre, G. Casas, R. Rossi, J. Rojek. Lagrangian analysis of multiscale particulate flows with the particle finite element method. Comp. Part. Mech. 1(1) (2014) DOI 10.1007/s40571-014-0012-9
M. Celigueta, K. Deshpande, S. Latorre, E. Oñate. A FEM-DEM technique for studying the motion of particles in non-Newtonian fluids. Application to the transport of drill cuttings in wellbores. Comp. Part. Mech. 3(2) (2015) DOI 10.1007/s40571-015-0090-3
A. Franci, I. de-Pouplana, G. Casas, M. Celigueta, J. González-Usúa, E. Oñate. PFEM–DEM for particle-laden flows with free surface. Comp. Part. Mech. 7(1) (2019) DOI 10.1007/s40571-019-00244-1
A. Shojaei, B. Boroomand, F. Mossaiby. A simple meshless method for challenging engineering problems. Engineering Computations 32(6) DOI 10.1108/ec-06-2014-0131
A. Hamrani, I. Belaidi, E. Monteiro, P. Lorong. On the Factors Affecting the Accuracy and Robustness of Smoothed-Radial Point Interpolation Method. Adv. Appl. Math. Mech. 9(1) (2016) DOI 10.4208/aamm.2015.m1115
J. Garcı´a, E. On˜ate. An Unstructured Finite Element Solver for Ship Hydrodynamics Problems. 70(1) (2003) DOI 10.1115/1.1530631
C. Varanasi, J. Murthy, S. Mathur. A Meshless Finite Difference Method for Conjugate Heat Conduction Problems. 132(8) (2010) DOI 10.1115/1.4001363
V. Gravemeier. The variational multiscale method for laminar and turbulent flow. ARCO 13(2) DOI 10.1007/bf02980231
E. Oñate, A. Franci, J. Carbonell. A Particle Finite Element Method (PFEM) for Coupled Thermal Analysis of Quasi and Fully Incompressible Flows and Fluid-Structure Interaction Problems. (2014) DOI 10.1007/978-3-319-06136-8_6
E. Oñate, S. Idelsohn, F. Del Pin, R. Aubry. Possibilities of the particle finite element method for fluid-structure interaction problems with free surface waves. Revue Européenne des Éléments Finis 13(5-7) (2012) DOI 10.3166/reef.13.637-666
A. Javed, K. Djidjeli, M. Jamil, I. Arif. A Stabilized RBF Finite Difference Method for Convection Dominated Flows over Meshfree Nodes. (2018) DOI 10.2514/6.2018-1565
A. Sapotnick, U. Nackenhorst. A Mechanically Stimulated Fracture Healing Model Using a Finite Element Framework. (2014) DOI 10.1007/978-3-319-10981-7_3
O. Eugenio. Finite increment calculus (FIC): a framework for deriving enhanced computational methods in mechanics. Adv. Model. and Simul. in Eng. Sci. 3(1) (2016) DOI 10.1186/s40323-016-0065-9
A. Shojaei, F. Mossaiby, M. Zaccariotto, U. Galvanetto. The meshless finite point method for transient elastodynamic problems. Acta Mech 228(10) (2017) DOI 10.1007/s00707-017-1894-4
U. Rasthofer, V. Gravemeier. Recent Developments in Variational Multiscale Methods for Large-Eddy Simulation of Turbulent Flow. Arch Computat Methods Eng 25(3) (2017) DOI 10.1007/s11831-017-9209-4
C. Felippa, E. Oñate, S. Idelsohn. Variational Framework for FIC Formulations in Continuum Mechanics: High Order Tensor-Derivative Transformations and Invariants. Arch Computat Methods Eng 25(4) (2017) DOI 10.1007/s11831-017-9245-0
T. Jacquemin, S. Tomar, K. Agathos, S. Mohseni-Mofidi, S. Bordas. Taylor-Series Expansion Based Numerical Methods: A Primer, Performance Benchmarking and New Approaches for Problems with Non-smooth Solutions. Arch Computat Methods Eng (2019) DOI 10.1007/s11831-019-09357-5
C. Felippa, E. Oñate. Nodally exact Ritz discretizations of 1D diffusion–absorption and Helmholtz equations by variational FIC and modified equation methods. Comput Mech 39(2) (2006) DOI 10.1007/s00466-005-0011-z
Y. Gu, G. Liu. Meshless techniques for convection dominated problems. Comput Mech 38(2) (2005) DOI 10.1007/s00466-005-0736-8
E. Oñate, A. Valls, J. García. FIC/FEM Formulation with Matrix Stabilizing Terms for Incompressible Flows at Low and High Reynolds Numbers. Comput Mech 38(4-5) (2006) DOI 10.1007/s00466-006-0060-y
E. Ortega, E. Oñate, S. Idelsohn. An improved finite point method for tridimensional potential flows. Comput Mech 40(6) (2007) DOI 10.1007/s00466-006-0154-6
E. Oñate, M. Celigueta, S. Idelsohn, F. Salazar, B. Suárez. Possibilities of the particle finite element method for fluid–soil–structure interaction problems. Comput Mech 48(3) (2011) DOI 10.1007/s00466-011-0617-2
E. Oñate, A. Franci, J. Carbonell. A particle finite element method for analysis of industrial forming processes. Comput Mech 54(1) (2014) DOI 10.1007/s00466-014-1016-2
E. Oñate, J. Carbonell. Updated lagrangian mixed finite element formulation for quasi and fully incompressible fluids. Comput Mech 54(6) (2014) DOI 10.1007/s00466-014-1078-1
M. Kouhi, E. Oñate. An implicit stabilized finite element method for the compressible Navier–Stokes equations using finite calculus. Comput Mech 56(1) (2015) DOI 10.1007/s00466-015-1161-2
I. Iaconeta, A. Larese, R. Rossi, E. Oñate. A stabilized mixed implicit Material Point Method for non-linear incompressible solid mechanics. Comput Mech 63(6) (2018) DOI 10.1007/s00466-018-1647-9