Abstract

El presente trabajo contempla tanto el escalado en la producción de un recubrimiento hielofóbico basado en una pintura aeronáutica, como la automatización de la aplicación de dicho recubrimiento. Para el proceso de automatización, se seleccionó un demostrador de geometría compleja representativo de un borde de ataque de material compuesto. La funcionalidad del recubrimiento, que se basa en la obtención de bajos valores de adhesión de hielo, está fuertemente influenciada por la morfología de la última capa de sol-gel que se aplica sobre la pintura. Por esta razón, durante el proceso de automatización ha sido necesario reajustar distintos parámetros del brazo robótico con el fin de conseguir un tamaño y distribución de gotas de sol-gel adecuado.

The current work contemplates both the scaling in the production of an icephobic coating based on an aeronautical paint as well as the automatic application of the aforementioned coating. In the automation process, a complex geometry demonstrator representative of a composite leading edge was selected. The functionality of the coating, which is based on getting low ice adhesion values, is strongly influenced by the morphology of the last sol-gel layer applied over the paint. For this reason, during the automation process it has been necessary to readjust different parameters of the robotic arm to achieve an adequate size and distribution of sol-gel droplets.

Full document

1. Introducción y objetivo La acumulación de hielo en las superficies exteriores de los aviones constituye un riesgo para la seguridad, además del efecto perjudicial que supone para el comportamiento aerodinámico. Los sistemas antihielo y deshielo más comunes no son compatibles con las estructuras de material compuesto debido a las elevadas temperaturas que se alcanzan, no soportables por las matrices poliméricas. Por ese motivo, nuevos sistemas activos y pasivos emergen como posibles alternativas. FIDAMC y el Grupo de Ciencia de Superficies y Nanoestructuras de la UCM han desarrollado y patentado un recubrimiento con baja adhesión de hielo basado en una pintura aeronáutica [1, 2, 3]. Para este desarrollo se utilizaron probetas de un tamaño reducido en las que las diferentes capas del recubrimiento fueron aplicadas mediante pistola aerográfica. En este trabajo se ha llevado a cabo el escalado del recubrimiento antihielo y su aplicación automática para recubrir un demostrador representativo de un borde de ataque de material compuesto con una envergadura de 1200 mm y una longitud de 450 mm. La clave del escalado reside en el control de la morfología de la última capa, de sol-gel, que juega un papel fundamental en la obtención de una baja adhesión de hielo. Para recubrir superficies mayores ha sido preciso reajustar los parámetros de aplicación del recubrimiento. Además, para garantizar que durante todo el proceso los diferentes parámetros se mantenían constantes, la aplicación del recubrimiento completo se llevó a cabo con un robot programado para reproducir la compleja geometría de la pieza. 2. Procedimiento experimental 2.1. Materiales Como material de partida, se ha empleado una pintura comercial de base poliuretano suministrada por Mankiewicz (ALEXIT 411-77) que actualmente se emplea en los sectores aeronáutico y eólico. Esta pintura ha sido modificada incorporando un polidimetilsiloxano (PDMS). La modificación se efectúa en el momento de mezclar los diversos componentes, añadiendo el PDMS al componente base de pintura, antes de incorporar el endurecedor. Posteriormente, sobre la superficie parcialmente curada de la pintura se aplica una capa discontinua de sol-gel en forma de gotas que permite la obtención de un recubrimiento hielofóbico. Para la mezcla de los distintos componentes de la pintura y el PDMS se empleó un agitador de palas de la marca VELP modelo LS. 2.2. Sistema automático de aplicación del recubrimiento La automatización del proceso de pintura ha implicado la aplicación precisa y uniforme de pintura y sol-gel en una geometría altamente compleja, como es un borde de ataque. Para lograr esto, se ha empleado una pistola de pintura DevilBiss AG-362 que permite ajustes precisos mediante el suministro de aire a presión. Esta pistola ha sido utilizada para controlar y regular la apertura del abanico, la presión de atomización y el flujo de pintura. Además, en conjunto con la pistola de pintura, se ha utilizado un calderín que actúa como depósito de pintura y permite controlar la presión a la que se encuentra sometida. Esta combinación de la pistola y el calderín ha permitido automatizar y optimizar el proceso de pintura, logrando una aplicación controlada. Todos estos parámetros son controlados mediante electroválvulas de presión comandadas por un PLC Siemens 1500. Además, se requiere el control de otros parámetros críticos, como la velocidad de aplicación, la distancia a la pieza, el solape entre pasadas, entre otros. Para abordar estos requerimientos, se ha integrado la pistola de pintura en un sistema de manipulación automatizado utilizando un brazo robótico KUKA KR500. Esta configuración permite una mayor precisión y repetibilidad en proceso, asegurando resultados consistentes en términos de los parámetros mencionados anteriormente. Para la programación de las trayectorias del borde de ataque, se ha empleado el software de simulación KukaSim 4.1. Mediante este software, se han extraído las geometrías del modelo 3D correspondiente y se han utilizado en la programación del brazo robótico. De esta manera, se logra una sincronización precisa entre las trayectorias definidas en el software y los movimientos reales del robot, asegurando una aplicación de pintura precisa y consistente en el borde de ataque (Figura 1).

Back to Top

Document information

Accepted on 27/01/24
Submitted on 24/05/23

Licence: Other

Document Score

0

Views 4
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?