G. Son, J. Park
As ships operate under sea wave conditions most of time, it is desirable to consider the wave effect on propeller performance and cavitation safety in the propeller design process. In this work, unsteady cavitation simulations are carried out on a five-bladed propeller of KRISO container ship in calm water and regular waves of five different headings. Bare-hull simulations are made for estimating nominal hull wake fields by URANS solver. Cavitation simulations are made on the propeller and rudder by DES with a cavitation model and an Eulerian multiphase flow model. Nominal hull wake is numerically modelled in cavitation simulations as a propeller inflow instead of including a hull model. The maximum cavity area on the suction side of the blade is increased by 19 – 32% for beam, stern-quartering and following sea waves compared to calm water mostly due to the stronger axial hull wake. As the sheet cavity is more extended, tip vortex cavitation is intensified especially for stern-quartering and following waves. The maximum cavity area is on a similar level with less than 3% differences for head and bow waves as for calm water. The CFD investigation shows that hull wake differs depending on the wave direction and it can lead to significant changes in cavitation safety.
Published on 21/06/23Submitted on 21/06/23
Volume Cavitating Flows, 2023DOI: 10.23967/marine.2023.014Licence: CC BY-NC-SA license
Views 1Recommendations 0
Are you one of the authors of this document?