Z. Rho, W. Wesson, A. Huenger
In today’s world, the rate of urbanization is increasingly getting faster and faster. Large cities that are heavily populated produce noise that is not only harmful to one’s hearing, but also for concentration and productivity. If constantly exposed to an environment such as the ones existing in heavily populated cities, long-term effects will take place in the health of citizens such as damage to the cochlea membrane, increased progression of hearing loss, and long-term nerve damage within the ear canal. Furthermore, there is an average of 292.4 million tons of waste being produced on average since the year 2018. Approximately 50% of materials being thrown out are materials that can be recycled or repurposed. Using recyclable materials to create an effective yet affordable soundproofing composite would be important from a health, economic and environmental standpoint. Composites created from recyclable materials (foam, cardboard, binder, soundproofing material) were constructed and their soundproofing capabilities were measured using a self-constructed low-cost impedance tube. A bluetooth speaker was used to produce a consistent frequency of sound (400 Hz) for 5 seconds into a composite. A Vernier SoundProbe was utilized to measure the sound after passing through the composite in decibels. The average amplitude (decibels) without any composite was 2.5 while with composite materials (<1.5). Percent reductions were calculated for each material (all reduced more than 15% of sound). The data supported the hypothesis in that the recyclable composites were able to reduce noise levels by 15% or more.
Keywords:
Published on 10/08/23Submitted on 30/07/23
Volume 5, 2023Licence: CC BY-NC-SA license
Views 22Recommendations 0
Are you one of the authors of this document?