The recent rise of renewable energy sources connected to the distribution networks and the high peak consumptions requested by electric vehicle-charging bring new challenges for network operators. To operate smart electricity grids, cooperation between grid-owned and third-party assets becomes crucial. In this paper, we propose a methodology that combines machine learning with multi-objective optimization to accurately plan the exploitation of the energy district&rsquo
s flexibility with the objective of reducing peak consumption and avoiding reverse power flow. Using historical data, acquired by the smart meters deployed on the pilot district, the district&rsquo
s power profile can be predicted daily and analyzed to identify potentially critical issues on the network. District&rsquo
s resources, such as electric vehicles, charging stations, photovoltaic panels, buildings energy management systems, and energy storage systems, have been modeled by taking into account their operational constraints and the multi-objective optimization has been adopted to identify the usage pattern that better suits the distribution operator&rsquo
s (DSO) needs. The district is subject to incentives and penalties based on its ability to respond to the DSO request. Analysis of the results shows that this methodology can lead to a substantial reduction of both the reverse power flow and peak consumption.
Document type: Article
The different versions of the original document can be found in:
under the license https://creativecommons.org/licenses/by/4.0/
Published on 01/01/2020
Volume 2020, 2020
DOI: 10.3390/electronics9060945
Licence: Other
Are you one of the authors of this document?