Flambe is a machine learning experimentation framework built to accelerate the entire research life cycle. Flambe’s main objective is to provide a unified interface for prototyping models, running experiments containing complex pipelines, monitoring those experiments in real-time, reporting results, and deploying a final model for inference. Flambe achieves both flexibility and simplicity by allowing users to write custom code but instantly include that code as a component in a larger system which is represented by a concise configuration file format. We demonstrate the application of the framework through a cutting-edge multistage use case: fine-tuning and distillation of a state of the art pretrained language model used for text classification.
The different versions of the original document can be found in:
Published on 01/01/2019
Volume 2019, 2019
DOI: 10.18653/v1/p19-3029
Licence: Other
Are you one of the authors of this document?