The Strut-and-Tie Model can be na excellent alternative for the design of reinforced concrete structural elements submitted to plane stress state and for regions with geometric or static discontinuity, replacing empirical procedures with a rational design methodology. To make the design of the model less dependent on the designer's experience, this article aims to combine the topological optimization technique ESO (Evolutionary Structural Optimization) with the Finite Element Method for the automatic generation of strut-and-tie models. The evolution criterion of the adopted topological optimization method considers the elimination of less stressed elements in terms of stress, from an elastic-linear analysis. In this context, it is possible to obtain optimized solutions of complex problems involving structural concrete. Three numerical examples are presented to prove and validate the formulations and techniques implemented whose strut-and-tie models present a good agreement in relation to the answers found in precursor scientific works on the subject.
Keywords: Strut-and-tie model, finite element method, topological optimization, reinforced concrete
O Modelo de Bielas e Tirantes pode ser uma excelente alternativa para o dimensionamento de elementos estruturais em concreto armado submetidos a estado plano de tensão e para regiões que apresentem descontinuidade de ordem geométrica ou estática, substituindo procedimentos empíricos por uma metodologia racional de projeto. Para tornar a concepção do modelo menos dependente da experiência do projetista, o presente artigo tem como objetivo aliar a técnica de otimização topológica ESO (Evolutionary Structural Optimization) ao Método dos Elementos Finitos para geração automática dos modelos de bielas e tirantes. O critério de evolução do método de otimização topológica adotado considera a eliminação de elementos menos solicitados em termos de tensão, a partir de uma análise elástico-linear. Nesse contexto, é possível obter soluções otimizadas de problemas complexos envolvendo o concreto estrutural. São apresentados três exemplos numéricos para comprovação e validação das formulações e técnicas implementadas, cujos modelos de bielas e tirantes obtidos apresentam boa concordância em relação às respostas encontradas em trabalhos científicos precursores sobre o tema.
Palavras-chave: Modelo de bielas e tirantes, método dos elementos finitos, otimização topológica, concreto armado
Para regiões ou elementos estruturais nos quais a Hipótese de Bernoulli não descreva adequadamente o comportamento estrutural ou distribuição de tensões, pode-se recorrer a outras alternativas de dimensionamento, tais como o Método dos Elementos Finitos (MEF) e o Modelo de Bielas e Tirantes (MBT). Nessas regiões, denominadas na literatura de ‘Regiões D’ (Descontinuity), as tensões de cisalhamento são significativas e a distribuição de deformações é não linear. Como exemplo, citam-se elementos estruturais como vigas-parede, consolos, sapatas, nós de pórticos, blocos rígidos de fundação sobre estacas, furos em vigas e dentes Gerber.
Estudos pioneiros envolvendo o MBT tiveram origem no início do século XX. Ritter e Morsch propuseram, a partir de resultados experimentais, a analogia clássica do modelo de treliças para o dimensionamento a cisalhamento de vigas fletidas de concreto armado. Segundo esse modelo, admite-se a substituição da viga original por uma treliça equivalente definida a partir da distribuição de tensões. As barras tracionadas representam campos de tensão de tração (tirantes), enquanto as barras comprimidas representam campos de tensão de compressão (bielas).
Foi a partir dos trabalhos desenvolvidos por Schlaich et al. [1], entretanto, que o tema ganhou forte impulso. Além das vigas inicialmente analisadas, esses pesquisadores estenderam a aplicação do modelo de bielas e tirantes a outros tipos de elementos estruturais. Abordaram temas como procedimentos para definição das regiões com e sem descontinuidade, geração dos modelos de treliças no interior do contínuo de concreto, cálculo dos esforços internos, diretrizes para verificação das tensões nas bielas e regiões nodais e cálculo e detalhamento da armadura necessária.
Entretanto, a não unicidade do modelo topológico, torna a concepção dependente da experiência e da sensibilidade estrutural do projetista para representar o fluxo interno de tensões. Sendo a armadura calculada e distribuída conforme o modelo topológico definido para o elemento estrutural de concreto armado, a correta definição desse não somente gera economia como também está relacionada à segurança.
A otimização topológica (OT) é comumente vista como um método computacional para lançar estruturas a partir da distribuição ótima de material em uma determinada região do espaço. Neste artigo, isso é feito através de uma combinação do Método dos Elementos Finitos, de um modelo para o comportamento do material e de técinas de otimização. Ou seja, o domínio de projeto é discretizado em uma malha refinada de elementos finitos, de modo que se possa analisar seu comportamento e, então, é distribuído material de forma racionalizada através de algoritmos de otimização.
É nesse contexto que se insere o objetivo deste trabalho, isto é, fornecer uma ferramenta eficaz e confiável para a geração automática do modelo de bielas e tirantes via OT, definindo a melhor configuração a ser adotada para a análise. Será adotada uma técnica de otimização de layout, proposta inicialmente por Xie e Steven [2] denominado Otimização Estrutural Evolucionária (Evolutionary Structural Optimization – ESO). A essência do método consiste na remoção gradual de regiões menos solicitadas, com base num critério de penalidade baseado em tensões equivalentes de von Mises. Isto é, elementos com tensões abaixo de um determinado limite são removidos da malha a cada iteração num processo denominado “hard-kill”. Dessa forma, é possível obter uma estrutura ótima para um dado volume remanescente.
Para a realização do objetivo principal pode-se destacar os seguintes objetivos específicos: implementação de um elemento finito triangular de três nós para análise em estado plano de tensão; implementação de uma rotina de otimização topológica dentro de um Programa de Elementos Finitos. A escolha do elemento triangular de três nós para a análise numérica de estruturas em estado plano de tensões, deve-se ao fato de que esse elemento requer uma discretização do contínuo bastante detalhada, permitindo assim definir as regiões de compressão e tração do modelo bielas e tirantes com mais refinamento. Uma vez que, em algumas etapas das análises a técnica de evolução utilizada no processo de otimização topológica na estrutura plana de concreto consiste em eliminar o elemento o da malha de elementos finitos, por isso a exigência de uma malha bem refinada, em consequência um elemento mais pobre em termos das funções de forma.
Para geração do modelo de bielas e tirantes considerando análise linear, foi implementado a técnica ESO que é uma alternativa ao rigor matemático de métodos clássicos de otimização. O algoritmo baseia-se em uma análise via MEF e, como o presente estudo trata de elementos estruturais de concreto armado submetidos a estado plano de tensões, foi necessária, portanto, a implementação de um elemento finito bidimensional, cuja formulações é descrita neste item.
O elemento finito implementado neste trabalho é o elemento triangular de três nós e dois graus de liberdade por nó, denominado Constant Strain Triangle (CST), usado na simulação numérica pelo MEF, baseado em deslocamentos. No caso da análise linear, o material é considerado homogêneo, isotrópico e linear.
Segundo o Princípio dos Trabalhos Virtuais (PTV), aplicando-se um campo de deformação virtual compatível ao elemento triangular tem-se: , isto é, o trabalho virtual externo é igual ao trabalho virtual interno. O trabalho virtual interno, , pode ser escrito como:
|
(1) |
onde é o operador variacional, é o estado tensional real em um ponto qualquer no elemento, e é o estado de deformação virtual em um ponto qualquer no elemento. A partir do tensor de deformação de Green-Lagrange e desprezando-se as tensões no plano de normal na direção , chega-se à Eq. (2) para trabalho virtual interno, onde é a espessura do elemento triangular
|
(2) |
Para o elemento triangular de três nós é usual adotar as funções de interpolação em coordenadas naturais, as quais podem ser escritas como:
|
(3a) | |
|
(3b) | |
|
(3c) |
onde , , , , , são as coordenadas cartesianas do elemento e sua área.
Definindo o vetor de deslocamentos nodais por e representando as funções de interpolação em coordenadas naturais pelo vetor coluna , definem-se as equações aproximadas dos deslocamentos associados aos deslocamentos nodais q que podem ser escritas na forma matricial conforme a Eq. (4)
|
(4) |
Na Eq. (4), é um vetor coluna nulo com três termos. Sendo os deslocamentos e funções dos deslocamentos nodais, os seus variacionais podem ser escritos a partir da seguinte expressão: , sendo o vetor dos deslocamentos nodais, o operador diferencial e substituído por e Substituindo esses variacionais na Eq. (2) chega-se ao trabalho virtual de um elemento triangular dado pela equação a seguir
|
(5) |
sendo o vetor de forças externas nas direções dos graus de liberdade do elemento triangular, o trabalho virtual externo é dado por , onde é o vetor de forças externas aplicadas diretamente na direção dos graus de liberdade do elemento, e as forças nodais equivalentes obtidas a partir do carregamento externo atuando no contorno do elemento. Da condição tem-se:
|
(6) |
Como a expressão acima deve ser válida para qualquer campo de deslocamento virtual , segue que , onde é o vetor de forças internas definido por:
|
(7) |
A Eq. (7) pode ser escrita na forma matricial como:
|
(8) |
Utilizando o método de Newton-Rapshon na solução do problema é necessária a determinação da derivada dessa expressão em relação aos deslocamentos nodais, obtendo assim a matriz de rigidez tangente. Sendo constante em relação aos deslocamentos nodais, a matriz de rigidez tangente é dada por , que, após manipulações algébricas, pode ser escrita de acordo com a Eq. (9)
|
(9) |
onde, e são as derivadas das funções de forma com relação a e , respectivamente, e são as tensões normais nas direções x e y, respectivamente, é a tensão cisalhante, é o vetor de deslocamento nodal, é a espessura e a área do elemento.
Na Eq. (9), a derivada da tensão normal na direção em relação aos deslocamentos nodais é dada por:
|
(10) |
As derivadas das deformações lineares em relação aos deslocamentos nodais são dadas pelas Eqs. (11) e (12)
|
(11) | |
|
(12) |
Substituindo as Eqs. (11) e (12) na derivada da tensão normal na direção x em relação aos deslocamentos nodais (Eq. (10)), tem-se:
|
(13) |
De forma análoga à descrita para tensão normal na direção , pode-se chegar às Eqs. (14) e (15) para as derivadas em relação aos deslocamentos nodais das outras tensões atuantes no elemento
|
(14) | |
|
(15) |
A seguir são determinadas as derivadas das funções de forma em relação aos eixos e .
|
(16) | |
|
(17) |
Na representação isoparamétrica, as coordenadas cartesianas e são relacionadas com as coordenadas paramétricas e . Então, para mudança do domínio de integração para utiliza-se a relação onde é a matriz jacobiano da transformação das coordenadas e para as coordenadas paramétricas e dada pela equação seguir. Dessa forma,
|
(18) |
A técnica ESO surge como uma alternativa ao rigor matemático de métodos clássicos de otimização. Apresenta uma base teórica simples cujo fundamento consiste na inserção de vazios na estrutura através da eliminação gradual dos elementos menos solicitados do domínio durante o processo de evolução. Portanto, para se obter a configuração ótima deve-se agregar ao estudo um nível de análise estrutural dependente de um domínio discreto, o que torna o emprego do MEF uma etapa do algoritmo de otimização.
Neste trabalho a representação matemática técnica ESO baseia-se no conceito de tensão, isto é, o nível máximo de tensão na estrutura, obtido por análises via MEF, é tomado como um indicador do nível de eficiência de cada elemento. Elementos com baixo nível de tensão são, portanto, sistematicamente removidos da estrutura. A cada iteração novos elementos ineficientes são eliminados da malha e o procedimento se repete até que o campo de tensão atuante em todo o domínio seja praticamente constante e muito próximo da tensão admissível do material ou que seja atingida a restrição de volume mínimo.
O critério de remoção é feito comparando-se a tensão de von Mises de cada elemento com a tensão de von Mises máxima existente em toda a estrutura. Portanto, no fim de cada iteração todos os elementos que atendem à Eq. (19) serão eliminados. A forma de retirada do elemento ocorre atribuindo-se baixos valores para seu módulo de elasticidade longitudinal (). Desse modo, evita-se o remalhamento da estrutura
|
(19) |
onde:
= tensão de von Mises no elemento analisado;
= razão de rejeição na i-ésima iteração ();
= máxima tensão de von Mises da iteração.
A razão de rejeição é usada para retardar o processo de remoção do elemento. O ciclo de remoção ocorre até que não possam mais ser removidos elementos para um dado valor de . Quando isto ocorre, um estado de equilíbrio é alcançado. O processo evolucionário é redefinido adicionando-se à uma razão de evolução, . A razão de rejeição é atualizada de acordo com a Eq. (20)
|
(20) |
O valor inicial da razão de rejeição () é definido de forma empírica pelo usuário. Entretanto, segundo Querin [3], para garantir melhor convergência, os valores de e devem ser de aproximadamente 1%. O processo se repete enquanto a estrutura não atingir o volume final, , definido pelo usuário, ou seja:
|
(21) |
onde é o volume retirado acumulado até aquela iteração, é o volume final expresso em percentual (por exemplo, implica que a retirada de elementos cessará quando o volume da estrutura atingir 40% do seu volume total inicial) e o volume inicial total da estrutura.
Matematicamente, o ESO pode ser escrito como:
Published on 06/04/20
Accepted on 29/03/20
Submitted on 08/12/19
Volume 36, Issue 2, 2020
DOI: 10.23967/j.rimni.2020.03.008
Licence: CC BY-NC-SA license
Are you one of the authors of this document?