S. Badia, J. Baiges
In this work we design hybrid continuous-discontinuous finite element spaces that permit discontinuities on nonmatching element interfaces of nonconforming meshes. Then we develop an equal-order stabilized finite element formulation for incompressible flows over these hybrid spaces, which combines the element interior stabilization of SUPG-type continuous Galerkin formulations and the jump stabilization of discontinuous Galerkin formulations. Optimal stability and convergence results are obtained. For the adaptive setting, we use a standard error estimator and marking strategy. Numerical experiments show the optimal accuracy of the hybrid algorithm for both uniformly and adaptively refined nonconforming meshes. The outcome of this work is a finite element formulation that can naturally be used on nonconforming meshes, as discontinuous Galerkin formulations, while keeping the much lower CPU cost of continuous Galerkin formulations.
Published on 01/01/2013
DOI: 10.1137/120880732Licence: CC BY-NC-SA license
Views 4Recommendations 0
Are you one of the authors of this document?