J. Haider, C. Lee, A. Gil, A. Huerta, J. Bonet
The paper presents a new computational framework for the numerical simulation of fast large strain solid dynamics, with particular emphasis on the treatment of near incompressibility. A complete set of first order hyperbolic conservation equations expressed in terms of the linear momentum and the minors of the deformation (namely the deformation gradient, its co-factor and its Jacobian), in conjunction with a polyconvex nearly incompressible constitutive law, is presented. Taking advantage of this elegant formalism, alternative implementations in terms of entropy-conjugate variables are also possible, through suitable symmetrisation of the original system of conservation variables. From the spatial discretisation standpoint, modern Computational Fluid Dynamics code “OpenFOAM” [http://www.openfoam.com/] is here adapted to the field of solid mechanics, with the aim to bridge the gap between computational fluid and solid dynamics. A cell centred finite volume algorithm is employed and suitably adapted. Naturally, discontinuity of the conservation variables across control volume interfaces leads to a Riemann problem, whose resolution requires special attention when attempting to model materials with predominant nearly incompressible behaviour (). For this reason, an acoustic Riemann solver combined with a preconditioning procedure is introduced. In addition, a global a posteriori angular momentum projection procedure proposed in Haider et al. (2017) is also presented and adapted to a Total Lagrangian version of the nodal scheme of Kluth and Després (2010) used in this paper for comparison purposes. Finally, a series of challenging numerical examples is examined in order to assess the robustness and applicability of the proposed methodology with an eye on large scale simulation in future works.
Keywords:
Published on 01/01/2018
DOI: 10.1016/j.cma.2018.06.010Licence: CC BY-NC-SA license
Views 0Recommendations 0
Are you one of the authors of this document?