F. Xu, Y. Zhao, Y. Li, M. Kikuchi. Study of numerical and physical fracture with SPH method. Acta Mechanica Solida Sinica 23(1) DOI 10.1016/s0894-9166(10)60006-7
J. Monaghan. Smoothed Particle Hydrodynamics and Its Diverse Applications. Annu. Rev. Fluid Mech. 44(1) DOI 10.1146/annurev-fluid-120710-101220
C. Wu, W. Hu, M. Koishi. A Smoothed Particle Galerkin Formulation for Extreme Material Flow Analysis in Bulk Forming Applications. Int. J. Comput. Methods 13(03) (2016) DOI 10.1142/s0219876216500195
Z. Dai, H. Ren, X. Zhuang, T. Rabczuk. Dual-Support Smoothed Particle Hydrodynamics for Elastic Mechanics. Int. J. Comput. Methods 14(04) (2017) DOI 10.1142/s0219876217500396
J. He, J. Lei. A GPU-Accelerated TLSPH Algorithm for 3D Geometrical Nonlinear Structural Analysis. Int. J. Comput. Methods 16(07) (2019) DOI 10.1142/s0219876218501141
R. Das, P. Cleary. Application of a mesh-free method to modelling brittle fracture and fragmentation of a concrete column during projectile impact. Computers and Concrete 16(6) DOI 10.12989/cac.2015.16.6.933
M. Dao, H. Xu, E. Chan, P. Tkalich. Modelling of tsunami-like wave run-up, breaking and impact on a vertical wall by SPH method. Nat. Hazards Earth Syst. Sci. 13(12) (2013) DOI 10.5194/nhess-13-3457-2013
F. Xu, Y. Zhao, R. Yan, T. Furukawa. Multidimensional discontinuous SPH method and its application to metal penetration analysis. Int. J. Numer. Meth. Engng 93(11) (2013) DOI 10.1002/nme.4414
T. Canor, V. Denoël. Transient Fokker-Planck-Kolmogorov equation solved with smoothed particle hydrodynamics method. Int. J. Numer. Meth. Engng 94(6) (2013) DOI 10.1002/nme.4461
M. Puso, J. Chen, E. Zywicz, W. Elmer. Meshfree and finite element nodal integration methods. Int. J. Numer. Meth. Engng 74(3) (2008) DOI 10.1002/nme.2181
B. Maurel, A. Combescure. An SPH shell formulation for plasticity and fracture analysis in explicit dynamics. Int. J. Numer. Meth. Engng 76(7) DOI 10.1002/nme.2316
B. Maurel, S. Potapov, J. Fabis, A. Combescure. Full SPH fluid-shell interaction for leakage simulation in explicit dynamics. Int. J. Numer. Meth. Engng 80(2) DOI 10.1002/nme.2629
D. Wang, J. Wang, J. Wu, J. Deng, M. Sun. A three-dimensional two-level gradient smoothing meshfree method for rainfall induced landslide simulations. Front. Struct. Civ. Eng. 13(2) (2018) DOI 10.1007/s11709-018-0467-5
G. Ganzenmüller, M. Sauer, M. May, S. Hiermaier. Hourglass control for Smooth Particle Hydrodynamics removes tensile and rank-deficiency instabilities. Eur. Phys. J. Spec. Top. 225(2) (2016) DOI 10.1140/epjst/e2016-02631-x
A. Fávero Neto, R. Borja. Continuum hydrodynamics of dry granular flows employing multiplicative elastoplasticity. Acta Geotech. 13(5) (2018) DOI 10.1007/s11440-018-0700-3
R. Das, P. Cleary. Evaluation of Accuracy and Stability of the Classical SPH Method Under Uniaxial Compression. J Sci Comput 64(3) (2014) DOI 10.1007/s10915-014-9948-4
T. Douillet-Grellier, R. Pramanik, K. Pan, A. Albaiz, B. Jones, J. Williams. Development of stress boundary conditions in smoothed particle hydrodynamics (SPH) for the modeling of solids deformation. Comp. Part. Mech. 4(4) (2016) DOI 10.1007/s40571-016-0137-0
G. Greto, S. Kulasegaram. An efficient and stabilised SPH method for large strain metal plastic deformations. Comp. Part. Mech. (2019) DOI 10.1007/s40571-019-00277-6
J. He, N. Tofighi, M. Yildiz, J. Lei, A. Suleman. A coupled WC-TL SPH method for simulation of hydroelastic problems. International Journal of Computational Fluid Dynamics 31(3) (2017) DOI 10.1080/10618562.2017.1324149
A. Zhang, F. Ming, X. Cao. Total Lagrangian particle method for the large-deformation analyses of solids and curved shells. Acta Mech 225(1) (2013) DOI 10.1007/s00707-013-0938-7