A. Long, A. Ferguson. Rational design of patchy colloids via landscape engineering. Mol. Syst. Des. Eng. 3(1) (2018) DOI 10.1039/c7me00077d
O. Valsson, P. Tiwary, M. Parrinello. Enhancing Important Fluctuations: Rare Events and Metadynamics from a Conceptual Viewpoint. Annu. Rev. Phys. Chem. 67(1) DOI 10.1146/annurev-physchem-040215-112229
B. Hashemian, M. Arroyo. Topological obstructions in the way of data-driven collective variables. The Journal of Chemical Physics 142(4) DOI 10.1063/1.4906425
V. Spiwok, P. Oborský, J. Pazúriková, A. Křenek, B. Králová. Nonlinear vs. linear biasing in Trp-cage folding simulations. The Journal of Chemical Physics 142(11) DOI 10.1063/1.4914828
S. Meloni, G. Ciccotti. Free energies for rare events: Temperature accelerated MD and MC. Eur. Phys. J. Spec. Top. 224(12) (2015) DOI 10.1140/epjst/e2015-02418-7
R. Galvelis, Y. Sugita. Replica state exchange metadynamics for improving the convergence of free energy estimates. J. Comput. Chem. 36(19) (2015) DOI 10.1002/jcc.23945
W. Chen, A. Ferguson. Molecular enhanced sampling with autoencoders: On-the-fly collective variable discovery and accelerated free energy landscape exploration. J Comput Chem 39(25) (2018) DOI 10.1002/jcc.25520
J. Pazúriková, A. Křenek, V. Spiwok, M. Šimková. Reducing the number of mean-square deviation calculations with floating close structure in metadynamics. J. Chem. Phys. 146(11) (2017) DOI 10.1063/1.4978296
C. Wehmeyer, F. Noé. Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics. The Journal of Chemical Physics 148(24) DOI 10.1063/1.5011399
W. Chen, A. Tan, A. Ferguson. Collective variable discovery and enhanced sampling using autoencoders: Innovations in network architecture and error function design. The Journal of Chemical Physics 149(7) DOI 10.1063/1.5023804
J. Wang, A. Ferguson. Nonlinear machine learning in simulations of soft and biological materials. Molecular Simulation 44(13-14) (2017) DOI 10.1080/08927022.2017.1400164
F. Greco, L. Filice, C. Peco, M. Arroyo. A stabilized formulation with maximum entropy meshfree approximants for viscoplastic flow simulation in metal forming. Int J Mater Form 8(3) (2014) DOI 10.1007/s12289-014-1167-x
B. Hashemian, D. Millán, M. Arroyo. Charting molecular free-energy landscapes with an atlas of collective variables. The Journal of Chemical Physics 145(17) DOI 10.1063/1.4966262
L. Delemotte, M. Kasimova, M. Klein, M. Tarek, V. Carnevale. Free-energy landscape of ion-channel voltage-sensor–domain activation. Proc Natl Acad Sci USA 112(1) (2014) DOI 10.1073/pnas.1416959112
F. Sittel, G. Stock. Perspective: Identification of collective variables and metastable states of protein dynamics. The Journal of Chemical Physics 149(15) DOI 10.1063/1.5049637
O. Fleetwood, M. Kasimova, A. Westerlund, L. Delemotte. Molecular insights from conformational ensembles via machine learning. DOI 10.1101/695254
C. Goolsby, A. Fakharzadeh, M. Moradi. Thermodynamic and Kinetic Characterization of Protein Conformational Dynamics within a Riemannian Diffusion Formalism. DOI 10.1101/707711