I. Arias, M. Arroyo
We characterize through large-scale simulations the nonlinear elastic response of multi-walled carbon nanotubes (MWNCNTs) in torsion and bending. We identify a unified law consisting of two distinct power-law regimes in the energy-deformation relation. This law encapsulates the complex mechanics of rippling and is described in terms of elastic constants, a critical length-scale and an anharmonic energy-deformation exponent. The mechanical response of MWCNTs is found to be strongly size-dependent, in that the critical strain beyond which they behave nonlinearly scales as the inverse of their diameter. These predictions are consistent with available experimental observations.
Published on 01/01/2008
DOI: 10.1103/PhysRevLett.100.085503Licence: CC BY-NC-SA license
Times cited: 47Views 4Recommendations 0
Are you one of the authors of this document?