J. Hernández, J. Oliver, J. Cante
The primary objective of this work is precisely to fill this gap by developing a constitutive model that attempts to describe the mechanical behavior of the powder during both pressing and ejection phases, with special emphasis on the representation of the cracking phenomenon. The constitutive relationships are derived within the general framework of rate-independent, isotropic, finite strain elastoplasticity. The yield function is defined in stress space by three surfaces intersecting nonsmoothly, namely, an elliptical cap and two classical Von Mises and Drucker-Prager yield surfaces. The distinct irreversible processes occurring at the microscopic level are macroscopically described in terms of two internal variables: an internal hardening variable, associated with accumulated compressive (plastic) strains, and an internal softening variable, linked with accumulated (plastic) shear strains. The innovative part of our modeling approach is connected mainly with the characterization of the latter phenomenological aspect: strain softening. Incorporation of a softening law permits the representation of macroscopic cracks as high gradients of inelastic strains (strain localization). Motivated by both numerical and physical reasons, a parabolic plastic potential function is introduced to describe the plastic flow on the linear Drucker-Prager failure surface. A thermodynamically consistent calibration procedure is employed to relate material parameters involved in the softening law to fracture energy values obtained experimentally on Distaloy AE specimens.
Published on 26/11/19
Licence: CC BY-NC-SA license
Views 12Recommendations 0
Are you one of the authors of this document?