Abstract

This article presents a space-time adaptive strategy for transient elastodynamics. The method aims at computing an optimal space-time discretization such that the computed solution has an error in the quantity of interest below a user-defined tolerance. The methodology is based on a goal-oriented error estimate that requires accounting for an auxiliary adjoint problem. The major novelty of this paper is using modal analysis to obtain a proper approximation of the adjoint solution. The idea of using a modal-based description was introduced in a previous work for error estimation purposes. Here this approach is used for the first time in the context of adaptivity. With respect to the standard direct time-integration methods, the modal solution of the adjoint problem is highly competitive in terms of computational effort and memory requirements. The performance of the proposed strategy is tested in two numerical examples. The two examples are selected to be representative of different wave propagation phenomena, one being a 2D bulky continuum and the second a 2D domain representing a structural frame.

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2014

DOI: 10.1007/s00466-014-0988-2
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 6
Views 4
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?