C. Gogu, A. Chaudhuri, C. Bes. How Adaptively Constructed Reduced Order Models Can Benefit Sampling-Based Methodsfor Reliability Analyses. Int. J. Rel. Qual. Saf. Eng. 23(05) (2016) DOI 10.1142/s0218539316500194
K. Serafin, B. Magnain, E. Florentin, N. Parés, P. Díez. Enhanced goal-oriented error assessment and computational strategies in adaptive reduced basis solver for stochastic problems. Int. J. Numer. Meth. Engng 110(5) (2016) DOI 10.1002/nme.5363
R. García-Blanco, D. Borzacchiello, F. Chinesta, P. Diez. Monitoring a PGD solver for parametric power flow problems with goal-oriented error assessment. Int. J. Numer. Meth. Engng 111(6) (2017) DOI 10.1002/nme.5470
L. Gallimard, E. Florentin, D. Ryckelynck. Towards error bounds of the failure probability of elastic structures using reduced basis models. Int. J. Numer. Meth. Engng 112(9) (2017) DOI 10.1002/nme.5554
G. Alaimo, F. Auricchio, I. Bianchini, E. Lanzarone. Applying functional principal components to structural topology optimization. Int J Numer Methods Eng 115(2) (2018) DOI 10.1002/nme.5801
L. Gallimard. Adaptive reduced basis strategy for rare‐event simulations. Int J Numer Methods Eng 120(3) (2019) DOI 10.1002/nme.6135
R. García-Blanco, P. Díez, D. Borzacchiello, F. Chinesta. Algebraic and Parametric Solvers for the Power Flow Problem: Towards Real-Time and Accuracy-Guaranteed Simulation of Electric Systems. Arch Computat Methods Eng 25(4) (2017) DOI 10.1007/s11831-017-9223-6
I. Bianchini, R. Argiento, F. Auricchio, E. Lanzarone. Efficient uncertainty quantification in stochastic finite element analysis based on functional principal components. Comput Mech 56(3) (2015) DOI 10.1007/s00466-015-1185-7
R. Cottereau, P. Díez. Fast r-adaptivity for multiple queries of heterogeneous stochastic material fields. Comput Mech 56(4) (2015) DOI 10.1007/s00466-015-1190-x