R. Borker, D. Huang, S. Grimberg, C. Farhat, P. Avery, J. Rabinovitch. Mesh adaptation framework for embedded boundary methods for computational fluid dynamics and fluid‐structure interaction. Int J Numer Meth Fluids 90(8) (2019) DOI 10.1002/fld.4728
E. Hachem, S. Feghali, T. Coupez, R. Codina. A three-field stabilized finite element method for fluid-structure interaction: elastic solid and rigid body limit. Int. J. Numer. Meth. Engng 104(7) (2015) DOI 10.1002/nme.4972
L. Billon, Y. Mesri, E. Hachem. Anisotropic boundary layer mesh generation for immersed complex geometries. Engineering with Computers 33(2) (2016) DOI 10.1007/s00366-016-0469-7
F. Auricchio, A. Lefieux, A. Reali. On the Use of Anisotropic Triangles with Mixed Finite Elements: Application to an “Immersed” Approach for Incompressible Flow Problems. (2016) DOI 10.1007/978-3-319-31925-4_8
F. Golay, M. Ersoy, L. Yushchenko, D. Sous. Block-based adaptive mesh refinement scheme using numerical density of entropy production for three-dimensional two-fluid flows. International Journal of Computational Fluid Dynamics 29(1) (2015) DOI 10.1080/10618562.2015.1012161
T. Altazin, M. Ersoy, F. Golay, D. Sous, L. Yushchenko. Numerical investigation of BB-AMR scheme using entropy production as refinement criterion. International Journal of Computational Fluid Dynamics 30(3) (2016) DOI 10.1080/10618562.2016.1194977
F. González Cornejo, M. Cruchaga, D. Celentano. Modelling low Reynolds number vortex-induced vibration problems with a fixed mesh fluid-solid interaction formulation. Physics of Fluids 29(11) DOI 10.1063/1.4996868
T. Coupez, L. Silva, E. Hachem. Implicit Boundary and Adaptive Anisotropic Meshing. DOI 10.1007/978-3-319-06053-8_1
J. Veysset, G. Jannoun, T. Coupez, E. Hachem. Immersed NURBS for CFD Applications. DOI 10.1007/978-3-319-06053-8_7
H. Jasak, I. Gatin, V. Vukčević. Monolithic coupling of the pressure and rigid body motion equations in computational marine hydrodynamics. J. Marine. Sci. Appl. 16(4) (2017) DOI 10.1007/s11804-017-1436-4