H. Kohno. A mixed-interpolation finite element method for incompressible thermal flows of electrically conducting fluids. Int. J. Numer. Meth. Fluids 83(11) (2016) DOI 10.1002/fld.4292
D. Dimopoulos, N. Pelekasis. 3D stability analysis of Rayleigh–Bénard convection of a liquid metal layer in the presence of a magnetic field—effect of wall electrical conductivity. Fluid Dyn. Res. 46(5) (2014) DOI 10.1088/0169-5983/46/5/055507
X. Dong, Y. He, H. Wei, Y. Zhang. Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow. Adv Comput Math 44(4) (2017) DOI 10.1007/s10444-017-9582-4
A. Nandy, C. Jog. A monolithic finite-element formulation for magnetohydrodynamics. Sādhanā 43(9) (2018) DOI 10.1007/s12046-018-0905-z
S. Badia, A. Hierro. On Monotonicity-Preserving Stabilized Finite Element Approximations of Transport Problems. SIAM J. Sci. Comput. 36(6) DOI 10.1137/130927206
E. Moreno, M. Cervera. Elementos finitos mixtos estabilizados para flujos confinados de Bingham y de Herschel-Bulkley. ParteI: Formulación. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 32(2) DOI 10.1016/j.rimni.2015.02.004
J. Trelles. Finite Element Methods for Arc Discharge Simulation. Plasma Process. Polym. 14(1-2) (2016) DOI 10.1002/ppap.201600092
S. Badia, A. Martín, J. Principe. FEMPAR: An Object-Oriented Parallel Finite Element Framework. Arch Computat Methods Eng 25(2) (2017) DOI 10.1007/s11831-017-9244-1