H. Coppola-Owen, R. Codina. A free surface finite element model for low Froude number mould filling problems on fixed meshes. Int. J. Numer. Meth. Fluids 66(7) (2010) DOI 10.1002/fld.2286
H. Owen, R. Codina. A third-order velocity correction scheme obtained at the discrete level. Int. J. Numer. Meth. Fluids 69(1) (2011) DOI 10.1002/fld.2535
R. Codina, J. Principe, S. Badia. Dissipative Structure and Long Term Behavior of a Finite Element Approximation of Incompressible Flows with Numerical Subgrid Scale Modeling. (2011) DOI 10.1007/978-90-481-9809-2_5
S. Badia, R. Planas, J. Gutiérrez-Santacreu. Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics system discretized by a stabilized finite element formulation based on projections. Int. J. Numer. Meth. Engng 93(3) (2012) DOI 10.1002/nme.4392
J. Baiges, R. Codina. A variational multiscale method with subscales on the element boundaries for the Helmholtz equation. Int. J. Numer. Meth. Engng 93(6) (2012) DOI 10.1002/nme.4406
E. Burman, M. Fernández. Galerkin Finite Element Methods with Symmetric Pressure Stabilization for the Transient Stokes Equations: Stability and Convergence Analysis. SIAM J. Numer. Anal. 47(1) DOI 10.1137/070707403
R. Codina. Finite Element Approximation of the Three-Field Formulation of the Stokes Problem Using Arbitrary Interpolations. SIAM J. Numer. Anal. 47(1) DOI 10.1137/080712726
S. Badia, R. Codina. Unified Stabilized Finite Element Formulations for the Stokes and the Darcy Problems. SIAM J. Numer. Anal. 47(3) DOI 10.1137/08072632x
S. Badia, R. Codina, J. Gutiérrez-Santacreu. Long-Term Stability Estimates and Existence of a Global Attractor in a Finite Element Approximation of the Navier–Stokes Equations with Numerical Subgrid Scale Modeling. SIAM J. Numer. Anal. 48(3) DOI 10.1137/090766681
S. Badia, R. Codina. A Nodal-based Finite Element Approximation of the Maxwell Problem Suitable for Singular Solutions. SIAM J. Numer. Anal. 50(2) DOI 10.1137/110835360
S. Badia, R. Codina, H. Espinoza. Stability, Convergence, and Accuracy of Stabilized Finite Element Methods for the Wave Equation in Mixed Form. SIAM J. Numer. Anal. 52(4) DOI 10.1137/130918708
R. Araya, A. Poza, F. Valentin. A low-order local projection method for the incompressible Navier–Stokes equations in two- and three-dimensions. IMA J Numer Anal (2015) DOI 10.1093/imanum/drv004
A. Allendes, F. Durán, R. Rankin. Error estimation for low-order adaptive finite element approximations for fluid flow problems. IMA J Numer Anal 36(4) (2015) DOI 10.1093/imanum/drv031
G. Barrenechea, F. Valentin. Beyond pressure stabilization: A low-order local projection method for the Oseen equation. Int. J. Numer. Meth. Engng. 86(7) (2010) DOI 10.1002/nme.3075
R. Codina, J. Baiges. Finite element approximation of transmission conditions in fluids and solids introducing boundary subgrid scales. Int. J. Numer. Meth. Engng. 87(1-5) (2011) DOI 10.1002/nme.3111
J. de Frutos, B. García-Archilla, V. John, J. Novo. Grad-div Stabilization for the Evolutionary Oseen Problem with Inf-sup Stable Finite Elements. J Sci Comput 66(3) (2015) DOI 10.1007/s10915-015-0052-1
R. Codina, J. Principe, M. Ávila. Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub‐grid scale modelling. Int Jnl of Num Meth for HFF 20(5) DOI 10.1108/09615531011048213
N. Lafontaine, R. Rossi, M. Cervera, M. Chiumenti. Formulación mixta estabilizada explícita de elementos finitos para sólidos compresibles y quasi-incompresibles. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 33(1-2) DOI 10.1016/j.rimni.2015.09.003
N. Lafontaine, M. Cervera, R. Rossi, M. Chiumenti. Una formulación mixta estabilizada explícita para plasticidad con localización de deformaciones. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 33(3-4) DOI 10.1016/j.rimni.2016.06.001
G. Chen, M. Feng. Subgrid scale eddy viscosity finite element method on optimal control of system governed by unsteady Oseen equations. Comput Optim Appl 58(3) (2014) DOI 10.1007/s10589-014-9649-9
V. John. The Time-Dependent Navier–Stokes Equations: Turbulent Flows. (2016) DOI 10.1007/978-3-319-45750-5_8
G. Barrenechea, A. Wachtel. Stabilised finite element methods for the Oseen problem on anisotropic quadrilateral meshes. ESAIM: M2AN 52(1) (2018) DOI 10.1051/m2an/2017031
T. Rebollo, M. Mármol, I. Munoz. Finite Element Solution of the Primitive Equations of the Ocean by the Orthogonal Sub-Scales Method. (2010) DOI 10.1007/978-3-642-11795-4_25
C. BERNARDI, T. CHACÓN REBOLLO, F. HECHT, R. LEWANDOWSKI. AUTOMATIC INSERTION OF A TURBULENCE MODEL IN THE FINITE ELEMENT DISCRETIZATION OF THE NAVIER–STOKES EQUATIONS. Math. Models Methods Appl. Sci. 19(07) (2011) DOI 10.1142/s0218202509003747
G. Chen, M. Feng. Analysis of Solving Galerkin Finite Element Methods with Symmetric Pressure Stabilization for the Unsteady Navier-Stokes Equations Using Conforming Equal Order Interpolation. Adv. Appl. Math. Mech. 9(2) (2017) DOI 10.4208/aamm.2014.m713
H. Roos. Robust Numerical Methods for Singularly Perturbed Differential Equations: A Survey Covering 2008–2012. ISRN Applied Mathematics 2012 DOI 10.5402/2012/379547
O. Colomes, G. Scovazzi, I. Sraj, O. Knio, O. Le Maître. A Finite Volume Error Estimator Inspired by the Variational Multiscale Approach. (2018) DOI 10.2514/6.2018-1178
T. Zhang, J. Zhao. A posteriori error estimates of finite element method for the time-dependent Oseen equations. Applicable Analysis 95(5) (2015) DOI 10.1080/00036811.2015.1055467
R. Codina. On hp convergence of stabilized finite element methods for the convection–diffusion equation. SeMA 75(4) (2018) DOI 10.1007/s40324-018-0154-4
J. Lu, T. Zhang. Adaptive stabilized finite volume method and convergence analysis for the Oseen equations. Bound Value Probl 2018(1) (2018) DOI 10.1186/s13661-018-1044-5
S. Badia, R. Codina, R. Planas. Analysis of an Unconditionally Convergent Stabilized Finite Element Formulation for Incompressible Magnetohydrodynamics. Arch Computat Methods Eng 22(4) (2014) DOI 10.1007/s11831-014-9129-5
N. Ahmed, T. Chacón Rebollo, V. John, S. Rubino. A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows. Arch Computat Methods Eng 24(1) (2015) DOI 10.1007/s11831-015-9161-0
N. Lafontaine, R. Rossi, M. Cervera, M. Chiumenti. Explicit mixed strain-displacement finite element for dynamic geometrically non-linear solid mechanics. Comput Mech 55(3) (2015) DOI 10.1007/s00466-015-1121-x
M. Cervera, N. Lafontaine, R. Rossi, M. Chiumenti. Explicit mixed strain–displacement finite elements for compressible and quasi-incompressible elasticity and plasticity. Comput Mech 58(3) (2016) DOI 10.1007/s00466-016-1305-z
E. Castillo, M. Cruchaga, J. Baiges, J. Flores. An oil sloshing study: adaptive fixed-mesh ALE analysis and comparison with experiments. Comput Mech 63(5) (2018) DOI 10.1007/s00466-018-1633-2