A. Coppola-Owen, R. Codina. A finite element model for free surface flows on fixed meshes. Int. J. Numer. Meth. Fluids 54(10) (2007) DOI 10.1002/fld.1412
R. Codina, J. Principe. Dynamic subscales in the finite element approximation of thermally coupled incompressible flows. Int. J. Numer. Meth. Fluids 54(6-8) (2007) DOI 10.1002/fld.1481
R. Codina, J. Blasco, G. Buscaglia, A. Huerta. Implementation of a stabilized finite element formulation for the incompressible Navier-Stokes equations based on a pressure gradient projection. Int. J. Numer. Meth. Fluids 37(4) (2001) DOI 10.1002/fld.182
M. Benzi, M. Olshanskii, Z. Wang. Modified augmented Lagrangian preconditioners for the incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids 66(4) (2011) DOI 10.1002/fld.2267
J. Baiges, R. Codina, H. Coppola-Owen. The Fixed-Mesh ALE approach for the numerical simulation of floating solids. Int. J. Numer. Meth. Fluids 67(8) (2010) DOI 10.1002/fld.2403
H. Owen, R. Codina. A third-order velocity correction scheme obtained at the discrete level. Int. J. Numer. Meth. Fluids 69(1) (2011) DOI 10.1002/fld.2535
R. Ausas, G. Buscaglia, S. Idelsohn. A new enrichment space for the treatment of discontinuous pressures in multi-fluid flows. Int. J. Numer. Meth. Fluids 70(7) (2011) DOI 10.1002/fld.2713
R. Codina, O. Soto. A numerical model to track two-fluid interfaces based on a stabilized finite element method and the level set technique. Int. J. Numer. Meth. Fluids 40(1-2) (2002) DOI 10.1002/fld.277
J. Baiges, R. Codina, S. Idelsohn. Explicit reduced-order models for the stabilized finite element approximation of the incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids 72(12) (2013) DOI 10.1002/fld.3777
P. Ryzhakov, J. Cotela, R. Rossi, E. Oñate. A two-step monolithic method for the efficient simulation of incompressible flows. Int. J. Numer. Meth. Fluids 74(12) (2014) DOI 10.1002/fld.3881
L. Pauli, J. Both, M. Behr. Stabilized finite element method for flows with multiple reference frames. Int. J. Numer. Meth. Fluids 78(11) (2015) DOI 10.1002/fld.4032
P. Ryzhakov, A. Jarauta. An embedded approach for immiscible multi-fluid problems. Int. J. Numer. Meth. Fluids 81(6) (2015) DOI 10.1002/fld.4190
C. Bayona, J. Baiges, R. Codina. Variational multiscale approximation of the one-dimensional forced Burgers equation: The role of orthogonal subgrid scales in turbulence modeling. Int J Numer Meth Fluids 86(5) (2017) DOI 10.1002/fld.4420
A. Coppola-Owen, R. Codina. Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions. Int. J. Numer. Meth. Fluids 49(12) (2005) DOI 10.1002/fld.963
O. GUASCH, R. CODINA. COMPUTATIONAL AEROACOUSTICS OF VISCOUS LOW SPEED FLOWS USING SUBGRID SCALE FINITE ELEMENT METHODS. J. Comp. Acous. 17(03) (2011) DOI 10.1142/s0218396x09003975
R. Codina, J. Principe, S. Badia. Dissipative Structure and Long Term Behavior of a Finite Element Approximation of Incompressible Flows with Numerical Subgrid Scale Modeling. (2011) DOI 10.1007/978-90-481-9809-2_5
S. Badia, R. Planas, J. Gutiérrez-Santacreu. Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics system discretized by a stabilized finite element formulation based on projections. Int. J. Numer. Meth. Engng 93(3) (2012) DOI 10.1002/nme.4392
J. Baiges, R. Codina. A variational multiscale method with subscales on the element boundaries for the Helmholtz equation. Int. J. Numer. Meth. Engng 93(6) (2012) DOI 10.1002/nme.4406
J. Cotela-Dalmau, R. Rossi, A. Larese. Simulation of two- and three-dimensional viscoplastic flows using adaptive mesh refinement. Int J Numer Methods Eng 112(11) (2017) DOI 10.1002/nme.5574
S. Badia, R. Codina. Analysis of a Stabilized Finite Element Approximation of the Transient Convection‐Diffusion Equation Using an ALE Framework. SIAM J. Numer. Anal. 44(5) DOI 10.1137/050643532
S. Badia, R. Codina. Unified Stabilized Finite Element Formulations for the Stokes and the Darcy Problems. SIAM J. Numer. Anal. 47(3) DOI 10.1137/08072632x
S. Badia, R. Codina, J. Gutiérrez-Santacreu. Long-Term Stability Estimates and Existence of a Global Attractor in a Finite Element Approximation of the Navier–Stokes Equations with Numerical Subgrid Scale Modeling. SIAM J. Numer. Anal. 48(3) DOI 10.1137/090766681
S. Badia, R. Codina. A Nodal-based Finite Element Approximation of the Maxwell Problem Suitable for Singular Solutions. SIAM J. Numer. Anal. 50(2) DOI 10.1137/110835360
J. Baiges, C. Bayona. Refficientlib: An Efficient Load-Rebalanced Adaptive Mesh Refinement Algorithm for High-Performance Computational Physics Meshes. SIAM J. Sci. Comput. 39(2) DOI 10.1137/15m105330x
N. Bootland, A. Bentley, C. Kees, A. Wathen. Preconditioners for Two-Phase Incompressible Navier--Stokes Flow. SIAM J. Sci. Comput. 41(4) (2019) DOI 10.1137/17m1153674
N. Vega Reyes, L. Cavaller, J. Marco de la Rosa, J. Baiges, A. Pont, D. Pérez-Sánchez, R. Codina, C. Grivel, M. Collados. Local seeing determination by thermal-CFD analysis to optimize the European Solar Telescope image quality. DOI 10.1117/12.2230564
N. Ahmed, T. Rebollo, V. John, S. Rubino. Analysis of a Full Space–Time Discretization of the Navier–Stokes Equations by a Local Projection Stabilization Method. IMA J Numer Anal (2016) DOI 10.1093/imanum/drw048
R. Codina, H. Coppola-Owen, P. Nithiarasu, C. Liu. Numerical comparison of CBS and SGS as stabilization techniques for the incompressible Navier–Stokes equations. Int. J. Numer. Meth. Engng 66(10) DOI 10.1002/nme.1697
S. Badia, R. Codina. On some fluid–structure iterative algorithms using pressure segregation methods. Application to aeroelasticity. Int. J. Numer. Meth. Engng 72(1) (2007) DOI 10.1002/nme.1998
J. Muñoz. On the modelling of incompressibility in linear and non-linear elasticity with the master–slave approach. Int. J. Numer. Meth. Engng 74(2) (2008) DOI 10.1002/nme.2166
R. Codina, J. Baiges. Approximate imposition of boundary conditions in immersed boundary methods. Int. J. Numer. Meth. Engng 80(11) DOI 10.1002/nme.2662
J. Baiges, R. Codina, F. Henke, S. Shahmiri, W. Wall. A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes. Int. J. Numer. Meth. Engng 90(5) (2012) DOI 10.1002/nme.3339
C. Yang, J. Samper. A Subgrid-Scale Stabilized Finite Element Method for Multicomponent Reactive Transport through Porous Media. Transp Porous Med 78(1) (2008) DOI 10.1007/s11242-008-9288-7
E. Oñate, J. García-Espinosa, S. Idelsohn, B. Serván-Camas. Ship Hydrodynamics. (2017) DOI 10.1002/9781119176817.ecm2070
D. Makhija, K. Maute. Level set topology optimization of scalar transport problems. Struct Multidisc Optim 51(2) (2014) DOI 10.1007/s00158-014-1142-7
D. Makhija, P. Beran. Concurrent shape and topology optimization for steady conjugate heat transfer. Struct Multidisc Optim 59(3) (2018) DOI 10.1007/s00158-018-2110-4
R. Codina, C. Morton, E. Oñate, O. Soto. Numerical aerodynamic analysis of large buildings using a finite element model with application to a telescope building. Int Jnl of Num Meth for HFF 10(6) DOI 10.1108/09615530010347196
A. Corsini, F. Rispoli, A. Santoriello. Quadratic Petrov‐Galerkin finite elements for advective‐reactive features in turbomachinery CFD. Int Jnl of Num Meth for HFF 15(8) DOI 10.1108/09615530510625147
G. Houzeaux, R. Codina. Finite element modeling of the lost foam casting process tackling back‐pressure effects. Int Jnl of Num Meth for HFF 16(5) DOI 10.1108/09615530610669111
J. Principe, R. Codina. A stabilized finite element approximation of low speed thermally coupled flows. Int Jnl of Num Meth for HFF 18(7/8) DOI 10.1108/09615530810898980
R. Helmig, B. Flemisch, M. Wolff, B. Faigle. Efficient Modeling of Flow and Transport in Porous Media Using Multi-physics and Multi-scale Approaches. (2014) DOI 10.1007/978-3-642-27793-1_15-3
R. Rossi, S. Idelsohn, E. Oñate, J. Cotela, F. Del Pin. Mejora de la solución fuertemente acoplada de problemas FSI mediante una aproximación de la matriz tangente de presión. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 27(3) DOI 10.1016/j.rimni.2011.07.006
P. Ryzhakov. A modified fractional step method for fluid–structure interaction problems. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 33(1-2) DOI 10.1016/j.rimni.2015.09.002
P. Ryzhakov, J. Marti. A Semi-Explicit Multi-Step Method for Solving Incompressible Navier-Stokes Equations. Applied Sciences 8(1) (2018) DOI 10.3390/app8010119
R. Helmig, J. Niessner, B. Flemisch, M. Wolff, J. Fritz. EfficientModeling of Flow and Transport in Porous Media Using Multiphysics andMultiscale Approaches. DOI 10.1007/978-3-642-01546-5_15
R. Codina, O. Zienkiewicz. CBS versus GLS stabilization of the incompressible Navier-Stokes equations and the role of the time step as stabilization parameter. Commun. Numer. Meth. Engng. 18(2) (2001) DOI 10.1002/cnm.470
V. John. The Time-Dependent Navier–Stokes Equations: Turbulent Flows. (2016) DOI 10.1007/978-3-319-45750-5_8
S. Hamimid, M. Guellal, M. Bouafia. Numerical Simulation of Combined Natural Convection Surface Radiation for Large Temperature Gradients. Journal of Thermophysics and Heat Transfer 29(3) DOI 10.2514/1.t4437
P. Ryzhakov, A. Jarauta, M. Secanell, J. Pons-Prats. On the application of the PFEM to droplet dynamics modeling in fuel cells. Comp. Part. Mech. 4(3) (2016) DOI 10.1007/s40571-016-0112-9
J. Marti, P. Ryzhakov. An explicit/implicit Runge–Kutta-based PFEM model for the simulation of thermally coupled incompressible flows. Comp. Part. Mech. 7(1) (2019) DOI 10.1007/s40571-019-00229-0
C. Bayona Roa, J. Baiges, R. Codina. Variational multi-scale finite element approximation of the compressible Navier-Stokes equations. Int Jnl of Num Meth for HFF 26(3/4) DOI 10.1108/hff-11-2015-0483
G. Houzeaux, J. Principe. A variational subgrid scale model for transient incompressible flows. International Journal of Computational Fluid Dynamics 22(3) DOI 10.1080/10618560701816387
V. Gravemeier. The variational multiscale method for laminar and turbulent flow. ARCO 13(2) DOI 10.1007/bf02980231
R. Baptista, S. Bento, L. Lima, I. Santos, A. Valli, L. Catabriga. A Nonlinear Subgrid Stabilization Parameter-Free Method to Solve Incompressible Navier-Stokes Equations at High Reynolds Numbers. (2019) DOI 10.1007/978-3-030-24302-9_11
J. Baiges, R. Codina, S. Idelsohn. Reduced-Order Modelling Strategies for the Finite Element Approximation of the Incompressible Navier-Stokes Equations. (2014) DOI 10.1007/978-3-319-06136-8_9
J. Abad, C. Frias, G. Buscaglia, M. Garcia. Modulation of the flow structure by progressive bedforms in the Kinoshita meandering channel. Earth Surf. Process. Landforms (2013) DOI 10.1002/esp.3460
A. Bakkar, W. Habashi, M. Fossati. Modeling of Large Droplets Impingement Using a Hybrid Taylor-Galerkin Variational Multi-Scale Stabilized Level Set Method. (2016) DOI 10.2514/6.2016-1339
J. Marti, S. Idelsohn, E. Oñate. A Finite Element Model for the Simulation of the UL-94 Burning Test. Fire Technol 54(6) (2018) DOI 10.1007/s10694-018-0769-0
D. Makhija, P. Beran. Spiral: A General Framework For Parameter Sensitivity Analysis. (2017) DOI 10.2514/6.2017-1306
D. Makhija, R. Snyder, P. Beran. Towards Cross-Language and Distributed Coupled-Model Design Optimization with Discrete Adjoints. (2018) DOI 10.2514/6.2018-0568
D. Makhija, P. Beran. Time Scale Effects in Topology Optimization of the Interior Material Distribution of a Body Subject to Transient Conjugate Heat Transfer. (2019) DOI 10.2514/6.2019-1468
A. Corsini, F. Rispoli, A. Santoriello. A new stabilized finite element method for advection-diffusion-reaction equations using quadratic elements. DOI 10.1007/978-3-662-08797-8_17
R. Helmig, B. Flemisch, M. Wolff, B. Faigle. Efficient Modeling of Flow and Transport in Porous Media Using Multi-physics and Multi-scale Approaches. (2015) DOI 10.1007/978-3-642-54551-1_15
C. de Saracibar, M. Chiumenti, M. Cervera, N. Dialami, A. Seret. Computational Modeling and Sub-Grid Scale Stabilization of Incompressibility and Convection in the Numerical Simulation of Friction Stir Welding Processes. Arch Computat Methods Eng 21(1) (2014) DOI 10.1007/s11831-014-9094-z
N. Ahmed, T. Chacón Rebollo, V. John, S. Rubino. A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows. Arch Computat Methods Eng 24(1) (2015) DOI 10.1007/s11831-015-9161-0
R. Codina, N. Hernández - Silva. Stabilized Finite Element Approximation of the Stationary Magneto-Hydrodynamics Equations. Comput Mech 38(4-5) (2006) DOI 10.1007/s00466-006-0037-x
P. Nithiarasu, R. Bevan, K. Murali. An artificial compressibility based fractional step method for solving time dependent incompressible flow equations. Temporal accuracy and similarity with a monolithic method. Comput Mech 51(3) (2012) DOI 10.1007/s00466-012-0719-5
M. Andre, K. Bletzinger, R. Wüchner. A complementary study of analytical and computational fluid-structure interaction. Comput Mech 55(2) (2014) DOI 10.1007/s00466-014-1104-3
Y. Guo, M. Ruess, D. Schillinger. A parameter-free variational coupling approach for trimmed isogeometric thin shells. Comput Mech 59(4) (2016) DOI 10.1007/s00466-016-1368-x
E. Castillo, M. Cruchaga, J. Baiges, J. Flores. An oil sloshing study: adaptive fixed-mesh ALE analysis and comparison with experiments. Comput Mech 63(5) (2018) DOI 10.1007/s00466-018-1633-2
T. Chacón Rebollo, E. Delgado Ávila, M. Gómez Mármol, S. Rubino. Assessment of self-adapting local projection-based solvers for laminar and turbulent industrial flows. J.Math.Industry 8(1) (2018) DOI 10.1186/s13362-018-0045-4