J. Principe, R. Codina. A stabilized finite element approximation of low speed thermally coupled flows. Int Jnl of Num Meth for HFF 18(7/8) DOI 10.1108/09615530810898980
E. Hachem, H. Digonnet, E. Massoni, T. Coupez. Immersed volume method for solving natural convection, conduction and radiation of a hat‐shaped disk inside a 3D enclosure. Int Jnl of Num Meth for HFF 22(6) DOI 10.1108/09615531211244871
P. Theeraek, S. Phongthanapanich, P. Dechaumphai. Combined adaptive meshing technique and finite volume element method for solving convection–diffusion equation. Japan J. Indust. Appl. Math. 30(1) (2012) DOI 10.1007/s13160-012-0095-8
T. Rebollo, M. Mármol, S. Rubino. Finite Element Approximation of an Unsteady Projection-Based VMS Turbulence Model with Wall Laws. (2016) DOI 10.1007/978-3-319-25727-3_5
C. Álvarez H., A. Coutinho. Cálculo de la función distancia para el método Level Set usando la formulación estabilizada USFEM/Rothe. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 29(4) DOI 10.1016/j.rimni.2013.07.002
E. Moreno, M. Cervera. Elementos finitos mixtos estabilizados para flujos confinados de Bingham y de Herschel-Bulkley. ParteI: Formulación. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 32(2) DOI 10.1016/j.rimni.2015.02.004
M. Uddin, M. Rahman, M. Alam. Analysis of natural convective heat transport in homocentric annuli containing nanofluids with an oriented magnetic field using nonhomogeneous dynamic model. Neural Comput & Applic 30(10) (2017) DOI 10.1007/s00521-017-2905-z
G. Houzeaux, B. Eguzkitza, M. Vázquez. A variational multiscale model for the advection-diffusion-reaction equation. Commun. Numer. Meth. Engng. 25(7) DOI 10.1002/cnm.1156
S. Phongthanapanich, P. Dechaumphai. Finite volume method for convectionâdiffusionâreaction equation on triangular meshes. Int. J. Numer. Meth. Biomed. Engng. DOI 10.1002/cnm.1168
A. Huerta, J. Donea. Time-accurate solution of stabilized convection-diffusion-reaction equations: I-time and space discretization. Commun. Numer. Meth. Engng. 18(8) (2002) DOI 10.1002/cnm.517
A. Huerta, B. Roig, J. Donea. Time-accurate solution of stabilized convection-diffusion-reaction equations: II-accuracy analysis and examples. Commun. Numer. Meth. Engng. 18(8) (2002) DOI 10.1002/cnm.518
W. Dong, A. Selvadurai. A Taylor-Galerkin approach for modelling a spherically symmetric advective-dispersive transport problem. Commun. Numer. Meth. Engng. 24(1) (2006) DOI 10.1002/cnm.955
S. Alakhramsing, R. van Ostayen, R. Eling. Thermo-Hydrodynamic Analysis of a Plain Journal Bearing on the Basis of a New Mass Conserving Cavitation Algorithm. Lubricants 3(2) (2015) DOI 10.3390/lubricants3020256
T. Metivet, V. Chabannes, M. Ismail, C. Prud’homme. High-Order Finite-Element Framework for the Efficient Simulation of Multifluid Flows. Mathematics 6(10) (2018) DOI 10.3390/math6100203
S. Boyaval, T. Lelièvre, C. Mangoubi. Free-energy-dissipative schemes for the Oldroyd-B model. ESAIM: M2AN 43(3) (2009) DOI 10.1051/m2an/2009008
L. Shen, J. Xin, A. Zhou. Finite Element Computation of KPP Front Speeds in 3D Cellular and ABC Flows. Math. Model. Nat. Phenom. 8(3) (2013) DOI 10.1051/mmnp/20138311
M. Kadalbajoo, P. Arora. Taylor-Galerkin B-spline finite element method for the one-dimensional advection-diffusion equation. Numer. Methods Partial Differential Eq. DOI 10.1002/num.20488
V. Singh, , R. Mohanty. Local meshless method for convection dominated steady and unsteady partial differential equations. Engineering with Computers 35(3) (2018) DOI 10.1007/s00366-018-0632-4
W. Ullrich, C. Hirsch, T. Sattelmayer, K. Lackhove, A. Sadiki, A. Fischer, M. Staufer. Combustion Noise Prediction Using Linearized Navier–Stokes Equations and Large-Eddy Simulation Sources. Journal of Propulsion and Power 34(1) DOI 10.2514/1.b36428
Y. Lin. Two-phase electro-hydrodynamic flow modeling by a conservative level set model. ELECTROPHORESIS 34(5) (2013) DOI 10.1002/elps.201200300
A. Selvadurai. On Recent Analytical Results for Advective Transport in Fluid-Saturated Porous Media. DOI 10.1007/978-3-540-35724-7_22
G. HAUKE, G. SANGALLI, M. DOWEIDAR. COMBINING ADJOINT STABILIZED METHODS FOR THE ADVECTION-DIFFUSION-REACTION PROBLEM. Math. Models Methods Appl. Sci. 17(02) (2011) DOI 10.1142/s0218202507001929
S. Komala Sheshachala, R. Codina. Finite element modeling of nonlinear reaction–diffusion–advection systems of equations. Int Jnl of Num Meth for HFF 28(11) DOI 10.1108/hff-02-2018-0077
M. Avila, R. Codina, J. Principe. Finite element dynamical subgrid-scale model for low Mach number flows with radiative heat transfer. Int Jnl of Num Meth for HFF 25(6) DOI 10.1108/hff-07-2014-0238
A. Corsini, F. Menichini, F. Rispoli, A. Santoriello, T. Tezduyar. A Multiscale Finite Element Formulation With Discontinuity Capturing for Turbulence Models With Dominant Reactionlike Terms. 76(2) (2009) DOI 10.1115/1.3062967
A. Corsini, F. Rispoli, T. Tezduyar. Computer Modeling of Wave-Energy Air Turbines With the SUPG/PSPG Formulation and Discontinuity-Capturing Technique. 79(1) (2011) DOI 10.1115/1.4005060
E. Romão, M. de Campos, L. Mendes de Moura. Poisson, Helmholtz and Convection 2D Unsteady Equations by Finite Difference Method of O(Δx6). DDF 336 (2013) DOI 10.4028/www.scientific.net/ddf.336.83
A. LEW†, G. BUSCAGLIA, P. CARRICA. A Note on the Numerical Treatment of the k-epsilon Turbulence Model*. International Journal of Computational Fluid Dynamics 14(3) DOI 10.1080/10618560108940724
J. Zhong, C. Zeng, Y. Yuan, Y. Zhang, Y. Zhang. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method. AIP Advances 8(4) DOI 10.1063/1.5023332
T. Tran, I. Golosnoy, P. Lewin, G. Georghiou. Numerical modelling of negative discharges in air with experimental validation. J. Phys. D: Appl. Phys. 44(1) (2010) DOI 10.1088/0022-3727/44/1/015203
P. Dordizadeh, K. Adamiak, G. Peter Castle. Numerical investigation of the formation of Trichel pulses in a needle-plane geometry. J. Phys. D: Appl. Phys. 48(41) (2015) DOI 10.1088/0022-3727/48/41/415203
V. Gravemeier. The variational multiscale method for laminar and turbulent flow. ARCO 13(2) DOI 10.1007/bf02980231
G. Callender, I. Golosnoy, P. Rapisarda, P. Lewin. Critical analysis of partial discharge dynamics in air filled spherical voids. J. Phys. D: Appl. Phys. 51(12) (2018) DOI 10.1088/1361-6463/aaae7c
F. Greco, L. Filice, C. Peco, M. Arroyo. A stabilized formulation with maximum entropy meshfree approximants for viscoplastic flow simulation in metal forming. Int J Mater Form 8(3) (2014) DOI 10.1007/s12289-014-1167-x
S. Phongthanapanich, P. Dechaumphai. Explicit characteristic finite volume method for convection–diffusion equation on rectangular grids. Journal of the Chinese Institute of Engineers 34(2) DOI 10.1080/02533839.2011.565589
M. Uddin, M. Alam, M. Rahman. Natural Convective Heat Transfer Flow of Nanofluids Inside a Quarter-Circular Enclosure Using Nonhomogeneous Dynamic Model. Arab J Sci Eng 42(5) (2016) DOI 10.1007/s13369-016-2330-0
R. Juanes, T. Patzek. Multiscale-stabilized finite element methods for miscible and immiscible flow in porous media. Journal of Hydraulic Research 42(sup1) (2010) DOI 10.1080/00221680409500056
G. Buscaglia, E. Dari. NUMERICAL INVESTIGATION OF FLOW THROUGH A CAVITY WITH INTERNAL HEAT GENERATION. Numerical Heat Transfer, Part A: Applications 43(5) (2010) DOI 10.1080/10407780307317
E. Romão, L. Mendes de Moura. Galerkin and Least Squares Methods to Solve a 3D Convection–Diffusion–Reaction Equation with Variable Coefficients. Numerical Heat Transfer, Part A: Applications 61(9) DOI 10.1080/10407782.2012.670594
Y. Zhao, P. Morris. The Prediction of Fan Exhaust Noise Propagation. (2012) DOI 10.2514/6.2005-2815
Y. Zhao, P. Morris. The Prediction of Fan Exhaust Noise Propagation. (2012) DOI 10.2514/6.2006-2420
S. Miller, P. Morris, Y. Zhao. Predictions of Fan Exhaust Noise Propagation. (2012) DOI 10.2514/6.2009-3145
K. Hamiche, H. Bériot, G. Gabard. A Stabilised High-Order Finite Element Model for the Linearised Euler Equations. (2015) DOI 10.2514/6.2015-3281
A. Bakkar, W. Habashi, M. Fossati. Modeling of Large Droplets Impingement Using a Hybrid Taylor-Galerkin Variational Multi-Scale Stabilized Level Set Method. (2016) DOI 10.2514/6.2016-1339
W. Ullrich, C. Hirsch, T. Sattelmayer. Computation of Combustion Noise from a Premixed and Pressurized Propane Flame Using Statistical Noise Modeling. (2016) DOI 10.2514/6.2016-4590
M. Zhelnin, A. Kostina, O. Plekhov. Variational multiscale finite element methods for a nonlinear convection-diffusion-reaction equation. Comp. Contin. Mech. 12(2) DOI 10.7242/1999-6691/2019.12.2.13
A. Zhu, Q. Xu, Z. Jiang. Characteristics Weak Galerkin Finite Element Methods for Convection-Dominated Diffusion Problems. Abstract and Applied Analysis 2014 DOI 10.1155/2014/102940
Y. Jing, N. Xiang. One-dimensional transport equation models for sound energy propagation in long spaces: Simulations and experiments. The Journal of the Acoustical Society of America 127(4) DOI 10.1121/1.3303981
J. Trelles. Finite Element Methods for Arc Discharge Simulation. Plasma Process. Polym. 14(1-2) (2016) DOI 10.1002/ppap.201600092
R. Codina. Finite Element Approximation of the Convection-Diffusion Equation: Subgrid-Scale Spaces, Local Instabilities and Anisotropic Space-Time Discretizations. (2011) DOI 10.1007/978-3-642-19665-2_10
S. Badia, R. Codina. Algebraic Pressure Segregation Methods for the Incompressible Navier-Stokes Equations. Arch Computat Methods Eng 15(3) (2008) DOI 10.1007/s11831-008-9020-3
C. de Saracibar, M. Chiumenti, M. Cervera, N. Dialami, A. Seret. Computational Modeling and Sub-Grid Scale Stabilization of Incompressibility and Convection in the Numerical Simulation of Friction Stir Welding Processes. Arch Computat Methods Eng 21(1) (2014) DOI 10.1007/s11831-014-9094-z
N. Ahmed, T. Chacón Rebollo, V. John, S. Rubino. A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows. Arch Computat Methods Eng 24(1) (2015) DOI 10.1007/s11831-015-9161-0
G. Hauke, M. Doweidar, D. Fuster, A. Gómez, J. Sayas. Application of Variational a-Posteriori Multiscale Error Estimation to Higher-Order Elements. Comput Mech 38(4-5) (2006) DOI 10.1007/s00466-006-0048-7
C. Cyron, K. Nissen, V. Gravemeier, W. Wall. Stable meshfree methods in fluid mechanics based on Green’s functions. Comput Mech 46(2) (2009) DOI 10.1007/s00466-009-0405-4
A. Corsini, C. Iossa, F. Rispoli, T. Tezduyar. A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors. Comput Mech 46(1) (2009) DOI 10.1007/s00466-009-0441-0
A. Corsini, F. Rispoli, A. Sheard, T. Tezduyar. Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations. Comput Mech 50(6) (2012) DOI 10.1007/s00466-012-0789-4
M. Andre, K. Bletzinger, R. Wüchner. A complementary study of analytical and computational fluid-structure interaction. Comput Mech 55(2) (2014) DOI 10.1007/s00466-014-1104-3
D. Feng, I. Neuweiler, U. Nackenhorst. A spatially stabilized TDG based finite element framework for modeling biofilm growth with a multi-dimensional multi-species continuum biofilm model. Comput Mech 59(6) (2017) DOI 10.1007/s00466-017-1388-1
Z. Lin, D. Wang. A finite element formulation preserving symmetric and banded diffusion stiffness matrix characteristics for fractional differential equations. Comput Mech 62(2) (2017) DOI 10.1007/s00466-017-1492-2
T. Chacón Rebollo, E. Delgado Ávila, M. Gómez Mármol, S. Rubino. Assessment of self-adapting local projection-based solvers for laminar and turbulent industrial flows. J.Math.Industry 8(1) (2018) DOI 10.1186/s13362-018-0045-4
V. Gravemeier, W. Wall. A ‘divide-and-conquer’ spatial and temporal multiscale method for transient convection–diffusion–reaction equations. Int. J. Numer. Meth. Fluids 54(6-8) (2007) DOI 10.1002/fld.1465
P. Nadukandi, E. Oñate, J. Garcia. Analysis of a consistency recovery method for the 1D convection–diffusion equation using linear finite elements. Int. J. Numer. Meth. Fluids 57(9) DOI 10.1002/fld.1863
C. Andreasen, A. Gersborg, O. Sigmund. Topology optimization of microfluidic mixers. Int. J. Numer. Meth. Fluids 61(5) DOI 10.1002/fld.1964
V. Gravemeier, W. Wall. Residual-based variational multiscale methods for laminar, transitional and turbulent variable-density flow at low Mach number. Int. J. Numer. Meth. Fluids 65(10) (2011) DOI 10.1002/fld.2242
C. Cyron, K. Nissen, V. Gravemeier, W. Wall. Information flux maximum-entropy approximation schemes for convection-diffusion problems. Int. J. Numer. Meth. Fluids 64(10-12) (2010) DOI 10.1002/fld.2271
A. Corsini, F. Rispoli, T. Tezduyar. Stabilized finite element computation of NOx emission in aero-engine combustors. Int. J. Numer. Meth. Fluids 65(1-3) (2010) DOI 10.1002/fld.2451
E. Hachem, T. Kloczko, H. Digonnet, T. Coupez. Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method. Int. J. Numer. Meth. Fluids 68(1) (2010) DOI 10.1002/fld.2498
T. Sheu, H. Chen. A multi-dimensional monotonic finite element model for solving the convection-diffusion-reaction equation. Int. J. Numer. Meth. Fluids 39(7) (2002) DOI 10.1002/fld.351
P. Bochev, K. Peterson, M. Perego. A multiscale control volume finite element method for advection-diffusion equations. Int. J. Numer. Meth. Fluids 77(11) (2015) DOI 10.1002/fld.3998
A. Sendur, A. Nesliturk. Bubble-based stabilized finite element methods for time-dependent convection-diffusion-reaction problems. Int. J. Numer. Meth. Fluids 82(8) (2016) DOI 10.1002/fld.4229
R. MacKinnon, G. Carey. Positivity-preserving, flux-limited finite-difference and finite-element methods for reactive transport. Int. J. Numer. Meth. Fluids 41(2) (2003) DOI 10.1002/fld.433
A. Selvadurai, W. Dong. The numerical modelling of advective transport in the presence of fluid pressure transients. Int. J. Numer. Anal. Meth. Geomech. 30(7) DOI 10.1002/nag.494
T. Rebollo, D. Gómez. A stabilized space-time discretization for the primitive equations in oceanography. Numer. Math. 98(3) (2004) DOI 10.1007/s00211-003-0497-3
T. Blanc, M. Pastor. Towards SPH modelling of failure problems in geomechanics. European Journal of Environmental and Civil Engineering 15(sup1) (2011) DOI 10.1080/19648189.2011.9695303
S. Buratin, P. Villoresi. Layer separation driven by laser-induced strain in semiconductor thin film. Opt. Mater. Express 3(11) (2013) DOI 10.1364/ome.3.001925
P. Bochev, K. Peterson. A parameter-free stabilized finite element method for scalar advection-diffusion problems. 11(8) DOI 10.2478/s11533-013-0250-8
A. Sendur. A stabilizing augmented grid for rectangular discretizations of the convection–diffusion–reaction problems. Calcolo 55(3) (2018) DOI 10.1007/s10092-018-0269-0
A. Sendur. A Comparative Study on Stabilized Finite Element Methods for the Convection-Diffusion-Reaction Problems. Journal of Applied Mathematics 2018 DOI 10.1155/2018/4259634
F. MAGRANS, O. GUASCH. THE ROLE OF THE DIRECT TRANSFER MATRIX AS A CONNECTIVITY MATRIX AND APPLICATION TO THE HELMHOLTZ EQUATION IN 2D: RELATION TO NUMERICAL METHODS AND FREE FIELD RADIATION EXAMPLE. J. Comp. Acous. 13(02) (2011) DOI 10.1142/s0218396x05002657
O. GUASCH, R. CODINA. COMPUTATIONAL AEROACOUSTICS OF VISCOUS LOW SPEED FLOWS USING SUBGRID SCALE FINITE ELEMENT METHODS. J. Comp. Acous. 17(03) (2011) DOI 10.1142/s0218396x09003975
K. NAKSHATRALA, A. VALOCCHI. VARIATIONAL STRUCTURE OF THE OPTIMAL ARTIFICIAL DIFFUSION METHOD FOR THE ADVECTION–DIFFUSION EQUATION. Int. J. Comput. Methods 07(04) (2011) DOI 10.1142/s0219876210002350
, V. Singh. A Local Meshless Method for Steady State Convection Dominated Flows. Int. J. Comput. Methods 14(06) (2017) DOI 10.1142/s0219876217500670
R. Codina, J. Principe, S. Badia. Dissipative Structure and Long Term Behavior of a Finite Element Approximation of Incompressible Flows with Numerical Subgrid Scale Modeling. (2011) DOI 10.1007/978-90-481-9809-2_5
M. Avila, A. Gargallo-Peiró, A. Folch. A CFD framework for offshore and onshore wind farm simulation. J. Phys.: Conf. Ser. 854 (2017) DOI 10.1088/1742-6596/854/1/012002
S. Badia, R. Codina. Algebraic pressure segregation methods for the incompressible Navier-Stokes equations. ARCO 15(3) DOI 10.1007/bf03024946
S. Patil, H. Chore. Contaminant transport through porous media: An overview of experimental and numerical studies. Advances in environmental research 3(1) DOI 10.12989/aer.2014.3.1.045
N. Wilkens, J. Behrens, T. Kleiner, D. Rippin, M. Rückamp, A. Humbert. Thermal structure and basal sliding parametrisation at Pine Island Glacier – a 3-D full-Stokes model study. The Cryosphere 9(2) (2015) DOI 10.5194/tc-9-675-2015
T. Blanc, M. Pastor. A stabilized Runge-Kutta, Taylor smoothed particle hydrodynamics algorithm for large deformation problems in dynamics. Int. J. Numer. Meth. Engng 91(13) (2012) DOI 10.1002/nme.4324
A. Sapotnick, U. Nackenhorst. A combined FIC-TDG finite element approach for the numerical solution of coupled advection-diffusion-reaction equations with application to a bioregulatory model for bone fracture healing. Int. J. Numer. Meth. Engng 92(3) (2012) DOI 10.1002/nme.4338
O. Babaniyi, A. Oberai, P. Barbone. Direct error in constitutive equation formulation for inverse heat conduction problem. Int J Numer Methods Eng 115(11) (2018) DOI 10.1002/nme.5846
H. Hernández, T. Massart, R. Peerlings, M. Geers. A stabilization technique for coupled convection-diffusion-reaction equations. Int J Numer Methods Eng 116(1) (2018) DOI 10.1002/nme.5914
Q. Liu, Y. Hou, L. Ding, Q. Liu. A Stabilized Galerkin Scheme for the Convection-Diffusion-Reaction Equations. Acta Appl Math 130(1) (2013) DOI 10.1007/s10440-013-9840-5
S. Badia, R. Codina. Analysis of a Stabilized Finite Element Approximation of the Transient Convection‐Diffusion Equation Using an ALE Framework. SIAM J. Numer. Anal. 44(5) DOI 10.1137/050643532
J. de Frutos, B. García-Archilla, J. Novo. Stabilization of Galerkin Finite Element Approximations to Transient Convection-Diffusion Problems. SIAM J. Numer. Anal. 48(3) DOI 10.1137/090763378
V. John, J. Novo. Error Analysis of the SUPG Finite Element Discretization of Evolutionary Convection-Diffusion-Reaction Equations. SIAM J. Numer. Anal. 49(3) DOI 10.1137/100789002
E. Cyr, J. Shadid, T. Wildey. Approaches for Adjoint-Based A Posteriori Analysis of Stabilized Finite Element Methods. SIAM J. Sci. Comput. 36(2) DOI 10.1137/120895822
P. Bochev, M. Perego, K. Peterson. Formulation and Analysis of a Parameter-Free Stabilized Finite Element Method. SIAM J. Numer. Anal. 53(5) DOI 10.1137/14096284x
R. Hohmann, C. Leithäuser. Shape Optimization of a Polymer Distributor Using an Eulerian Residence Time Model. SIAM J. Sci. Comput. 41(4) (2019) DOI 10.1137/18m1225847
G. Barrenechea, V. John, P. Knobloch. Some analytical results for an algebraic flux correction scheme for a steady convection–diffusion equation in one dimension. IMA J Numer Anal 35(4) (2014) DOI 10.1093/imanum/dru041
P. Nithiarasu, R. Codina, O. Zienkiewicz. The Characteristic-Based Split (CBS) scheme—a unified approach to fluid dynamics. Int. J. Numer. Meth. Engng 66(10) DOI 10.1002/nme.1698
A. Lew, G. Buscaglia. A discontinuous-Galerkin-based immersed boundary method. Int. J. Numer. Meth. Engng 76(4) DOI 10.1002/nme.2312
R. Codina, J. Baiges. Approximate imposition of boundary conditions in immersed boundary methods. Int. J. Numer. Meth. Engng 80(11) DOI 10.1002/nme.2662
J. Baiges, R. Codina. The fixed-mesh ALE approach applied to solid mechanics and fluid-structure interaction problems. Int. J. Numer. Meth. Engng DOI 10.1002/nme.2740
H. Hernández, T. Massart, R. Peerlings, M. Geers. Towards an unconditionally stable numerical scheme for continuum dislocation transport. Modelling Simul. Mater. Sci. Eng. 23(8) (2015) DOI 10.1088/0965-0393/23/8/085013
Y. Sun, C. Westphal. An adaptively weighted Galerkin finite element method for boundary value problems. Commun. Appl. Math. Comput. Sci. 10(1) (2015) DOI 10.2140/camcos.2015.10.27
C. Yang, J. Samper. A Subgrid-Scale Stabilized Finite Element Method for Multicomponent Reactive Transport through Porous Media. Transp Porous Med 78(1) (2008) DOI 10.1007/s11242-008-9288-7
E. Oñate, J. García-Espinosa, S. Idelsohn, B. Serván-Camas. Ship Hydrodynamics. (2017) DOI 10.1002/9781119176817.ecm2070
Q. Li, Z. Chai, B. Shi. An Efficient Lattice Boltzmann Model for Steady Convection–Diffusion Equation. J Sci Comput 61(2) (2014) DOI 10.1007/s10915-014-9827-z
N. Ahmed, G. Matthies. Numerical Study of SUPG and LPS Methods Combined with Higher Order Variational Time Discretization Schemes Applied to Time-Dependent Linear Convection–Diffusion–Reaction Equations. J Sci Comput 67(3) (2015) DOI 10.1007/s10915-015-0115-3
D. Makhija, K. Maute. Level set topology optimization of scalar transport problems. Struct Multidisc Optim 51(2) (2014) DOI 10.1007/s00158-014-1142-7
R. Codina, C. Morton, E. Oñate, O. Soto. Numerical aerodynamic analysis of large buildings using a finite element model with application to a telescope building. Int Jnl of Num Meth for HFF 10(6) DOI 10.1108/09615530010347196