Abstract

In this monograph we have focused on understanding the basic physical principles of multi-fluid flows and the difficulties that arise in their numerical simulation. We have extended the Particle Finite Element Method to problems involving several different fluids with the aim of exploiting the fact that Lagrangian methods are specially well suited for tracking any kind of interfaces. We have developed a numerical scheme able to deal with large jumps in the physical properties (density and viscosity), include surface tension, and accurately represent all types of discontinuities in the flow variables at the interface.

The scheme is based on decoupling the nodes position, velocity and pressure variables through the Picard linearization and a pressure segregation method which takes into account the interface conditions. The interface has been defined to be aligned with the moving mesh, so that it remains sharp along time. Furthermore, pressure degrees of freedom have been duplicated at the interface nodes to represent the discontinuity of this variable due to surface tension and variable viscosity, and the mesh has been refined in the vicinity of the interface to improve the accuracy of the computations.

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 17/05/19

Licence: CC BY-NC-SA license

Document Score

0

Views 28
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?