F. Salazar, B. Crookston. A Performance Comparison of Machine Learning Algorithms for Arced Labyrinth Spillways. Water 11(3) (2019) DOI 10.3390/w11030544
L. Nguyen, J. Goulet. Anomaly detection with the Switching Kalman Filter for structural health monitoring. Struct Control Health Monit 25(4) (2018) DOI 10.1002/stc.2136
C. Lin, T. Li, X. Liu, L. Zhao, S. Chen, H. Qi. A deformation separation method for gravity dam body and foundation based on the observed displacements. Struct Control Health Monit 26(2) (2018) DOI 10.1002/stc.2304
B. Chen, T. Hu, Z. Huang, C. Fang. A spatio-temporal clustering and diagnosis method for concrete arch dams using deformation monitoring data. Structural Health Monitoring 18(5-6) (2018) DOI 10.1177/1475921718797949
X. Li, Y. Li, X. Lu, Y. Wang, H. Zhang, P. Zhang. An online anomaly recognition and early warning model for dam safety monitoring data. Structural Health Monitoring (2019) DOI 10.1177/1475921719864265
F. Kang, X. Liu, J. Li. Temperature effect modeling in structural health monitoring of concrete dams using kernel extreme learning machines. Structural Health Monitoring (2019) DOI 10.1177/1475921719872939
C. Lin, T. Li, S. Chen, X. Liu, C. Lin, S. Liang. Gaussian process regression-based forecasting model of dam deformation. Neural Comput & Applic 31(12) (2019) DOI 10.1007/s00521-019-04375-7
H. Liu, C. Ren, Z. Zheng, Y. Liang, X. Lu. Study of a Gray Genetic BP Neural Network Model in Fault Monitoring and a Diagnosis System for Dam Safety. IJGI 7(1) (2017) DOI 10.3390/ijgi7010004
F. Kang, X. Liu, J. Li. Concrete Dam Behavior Prediction Using Multivariate Adaptive Regression Splines with Measured Air Temperature. Arab J Sci Eng 44(10) (2019) DOI 10.1007/s13369-019-04095-z
J. Rico, J. Barateiro, J. Mata, A. Antunes, E. Cardoso. Applying Advanced Data Analytics and Machine Learning to Enhance the Safety Control of Dams. (2019) DOI 10.1007/978-3-030-15628-2_10
S. Dargan, M. Kumar, M. Ayyagari, G. Kumar. A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning. Arch Computat Methods Eng (2019) DOI 10.1007/s11831-019-09344-w