J. Cui, Q. Jiang, X. Feng, S. Li, J. Liu, W. Chen, J. Zhang, S. Pei. Insights into statistical structural characteristics and deformation properties of columnar jointed basalts: field investigation in the Baihetan Dam base, China. Bull Eng Geol Environ 77(2) (2017) DOI 10.1007/s10064-017-1029-0
D. Vicente, J. San Mauro, F. Salazar, C. Baena. An Interactive Tool for Automatic Predimensioning and Numerical Modeling of Arch Dams. Mathematical Problems in Engineering 2017 DOI 10.1155/2017/9856938
F. Salazar, B. Crookston. A Performance Comparison of Machine Learning Algorithms for Arced Labyrinth Spillways. Water 11(3) (2019) DOI 10.3390/w11030544
F. Salazar, M. Toledo, J. González, E. Oñate. Early detection of anomalies in dam performance: A methodology based on boosted regression trees. Struct Control Health Monit 24(11) (2017) DOI 10.1002/stc.2012
J. Hu, F. Ma, S. Wu. Anomaly identification of foundation uplift pressures of gravity dams based on DTW and LOF. Struct Control Health Monit 25(5) (2018) DOI 10.1002/stc.2153
B. Dai, C. Gu, E. Zhao, X. Qin. Statistical model optimized random forest regression model for concrete dam deformation monitoring. Struct Control Health Monit 25(6) (2018) DOI 10.1002/stc.2170
C. Lin, T. Li, X. Liu, L. Zhao, S. Chen, H. Qi. A deformation separation method for gravity dam body and foundation based on the observed displacements. Struct Control Health Monit 26(2) (2018) DOI 10.1002/stc.2304
S. Wang, Y. Xu, C. Gu, T. Bao, Q. Xia, K. Hu. Hysteretic effect considered monitoring model for interpreting abnormal deformation behavior of arch dams: A case study. Struct Control Health Monit 26(10) (2019) DOI 10.1002/stc.2417
F. Sun, A. Mejia, Y. Che. Disentangling the Contributions of Climate and Basin Characteristics to Water Yield Across Spatial and Temporal Scales in the Yangtze River Basin: A Combined Hydrological Model and Boosted Regression Approach. Water Resour Manage 33(10) (2019) DOI 10.1007/s11269-019-02310-y
Q. Ren, M. Li, M. Zhang, Y. Shen, W. Si. Prediction of Ultimate Axial Capacity of Square Concrete-Filled Steel Tubular Short Columns Using a Hybrid Intelligent Algorithm. Applied Sciences 9(14) (2019) DOI 10.3390/app9142802
K. Bui, D. Tien Bui, J. Zou, C. Van Doan, I. Revhaug. A novel hybrid artificial intelligent approach based on neural fuzzy inference model and particle swarm optimization for horizontal displacement modeling of hydropower dam. Neural Comput & Applic 29(12) (2016) DOI 10.1007/s00521-016-2666-0
B. Dai, C. Gu, E. Zhao, K. Zhu, W. Cao, X. Qin. Improved online sequential extreme learning machine for identifying crack behavior in concrete dam. Advances in Structural Engineering 22(2) (2018) DOI 10.1177/1369433218788635
X. Li, Z. Wen, H. Su. An approach using random forest intelligent algorithm to construct a monitoring model for dam safety. Engineering with Computers (2019) DOI 10.1007/s00366-019-00806-0
M. Zabihi, H. Pourghasemi, A. Motevalli, M. Zakeri. Gully Erosion Modeling Using GIS-Based Data Mining Techniques in Northern Iran: A Comparison Between Boosted Regression Tree and Multivariate Adaptive Regression Spline. (2018) DOI 10.1007/978-3-319-73383-8_1
J. Rico, J. Barateiro, J. Mata, A. Antunes, E. Cardoso. Applying Advanced Data Analytics and Machine Learning to Enhance the Safety Control of Dams. (2019) DOI 10.1007/978-3-030-15628-2_10
S. Dargan, M. Kumar, M. Ayyagari, G. Kumar. A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning. Arch Computat Methods Eng (2019) DOI 10.1007/s11831-019-09344-w