T. Hughes, G. Sangalli, M. Tani. Isogeometric Analysis: Mathematical and Implementational Aspects, with Applications. (2018) DOI 10.1007/978-3-319-94911-6_4
F. Salazar, B. Crookston. A Performance Comparison of Machine Learning Algorithms for Arced Labyrinth Spillways. Water 11(3) (2019) DOI 10.3390/w11030544
S. Gamse, M. Oberguggenberger. Assessment of long-term coordinate time series using hydrostatic-season-time model for rock-fill embankment dam. Struct. Control Health Monit. 24(1) (2016) DOI 10.1002/stc.1859
F. Salazar, M. Toledo, J. González, E. Oñate. Early detection of anomalies in dam performance: A methodology based on boosted regression trees. Struct Control Health Monit 24(11) (2017) DOI 10.1002/stc.2012
Y. Shi, J. Yang, J. Wu, J. He. A statistical model of deformation during the construction of a concrete face rockfill dam. Struct Control Health Monit 25(2) (2017) DOI 10.1002/stc.2074
J. Hu, F. Ma, S. Wu. Comprehensive investigation of leakage problems for concrete gravity dams with penetrating cracks based on detection and monitoring data: A case study. Struct Control Health Monit 25(4) (2017) DOI 10.1002/stc.2127
L. Nguyen, J. Goulet. Anomaly detection with the Switching Kalman Filter for structural health monitoring. Struct Control Health Monit 25(4) (2018) DOI 10.1002/stc.2136
J. Hu, F. Ma, S. Wu. Anomaly identification of foundation uplift pressures of gravity dams based on DTW and LOF. Struct Control Health Monit 25(5) (2018) DOI 10.1002/stc.2153
C. Lin, T. Li, X. Liu, L. Zhao, S. Chen, H. Qi. A deformation separation method for gravity dam body and foundation based on the observed displacements. Struct Control Health Monit 26(2) (2018) DOI 10.1002/stc.2304
S. Wang, Y. Xu, C. Gu, T. Bao, Q. Xia, K. Hu. Hysteretic effect considered monitoring model for interpreting abnormal deformation behavior of arch dams: A case study. Struct Control Health Monit 26(10) (2019) DOI 10.1002/stc.2417
I. Masoumi, K. Ahangari, A. Noorzad. Integrated fuzzy decision approach for reliability improvement of dam instrumentation and monitoring. Journal of Structural Integrity and Maintenance 3(2) (2018) DOI 10.1080/24705314.2018.1461546
G. Liang, Y. Hu, Q. Li. Safety Monitoring of High Arch Dams in Initial Operation Period Using Vector Error Correction Model. Rock Mech Rock Eng 51(8) (2017) DOI 10.1007/s00603-017-1287-y
M. Moradi, M. Hariri-Ardebili. Developing a Library of Shear Walls Database and the Neural Network Based Predictive Meta-Model. Applied Sciences 9(12) (2019) DOI 10.3390/app9122562
J. Hu, S. Wu. Statistical modeling for deformation analysis of concrete arch dams with influential horizontal cracks. Structural Health Monitoring 18(2) (2018) DOI 10.1177/1475921718760309
B. Chen, T. Hu, Z. Huang, C. Fang. A spatio-temporal clustering and diagnosis method for concrete arch dams using deformation monitoring data. Structural Health Monitoring 18(5-6) (2018) DOI 10.1177/1475921718797949
X. Li, Y. Li, X. Lu, Y. Wang, H. Zhang, P. Zhang. An online anomaly recognition and early warning model for dam safety monitoring data. Structural Health Monitoring (2019) DOI 10.1177/1475921719864265
F. Kang, X. Liu, J. Li. Temperature effect modeling in structural health monitoring of concrete dams using kernel extreme learning machines. Structural Health Monitoring (2019) DOI 10.1177/1475921719872939
X. Tan, W. Chen, G. Wu, L. Wang, J. Yang. A structural health monitoring system for data analysis of segment joint opening in an underwater shield tunnel. Structural Health Monitoring (2019) DOI 10.1177/1475921719876045
K. Bui, D. Tien Bui, J. Zou, C. Van Doan, I. Revhaug. A novel hybrid artificial intelligent approach based on neural fuzzy inference model and particle swarm optimization for horizontal displacement modeling of hydropower dam. Neural Comput & Applic 29(12) (2016) DOI 10.1007/s00521-016-2666-0
C. Lin, T. Li, S. Chen, X. Liu, C. Lin, S. Liang. Gaussian process regression-based forecasting model of dam deformation. Neural Comput & Applic 31(12) (2019) DOI 10.1007/s00521-019-04375-7
J. Tinoco, M. de Granrut, D. Dias, T. Miranda, A. Simon. Piezometric level prediction based on data mining techniques. Neural Comput & Applic (2019) DOI 10.1007/s00521-019-04392-6
X. Li, Z. Wen, H. Su. An approach using random forest intelligent algorithm to construct a monitoring model for dam safety. Engineering with Computers (2019) DOI 10.1007/s00366-019-00806-0
H. Zhao, Z. Gao. Uncertainty-based design optimization of NLF airfoil for high altitude long endurance unmanned air vehicles. Engineering Computations 36(3) DOI 10.1108/ec-05-2018-0215
V. Khoroshilov. Mathematical Modelling of Sayano-Shushenskaya Dam Displacement Process after 2009 Accident. JERA 39 (2018) DOI 10.4028/www.scientific.net/jera.39.47
S. Wang, Y. Xu, Q. Xia, K. Hu. Deformation Monitoring Indexes of High Concrete Arch Dam Considering Time-varying Effect. IOP Conf. Ser.: Earth Environ. Sci. 304 (2019) DOI 10.1088/1755-1315/304/2/022005
F. Mohamed Nazri, M. Miari, M. Kassem, C. Tan, E. Farsangi. Probabilistic Evaluation of Structural Pounding Between Adjacent Buildings Subjected to Repeated Seismic Excitations. Arab J Sci Eng 44(5) (2018) DOI 10.1007/s13369-018-3666-4
F. Kang, X. Liu, J. Li. Concrete Dam Behavior Prediction Using Multivariate Adaptive Regression Splines with Measured Air Temperature. Arab J Sci Eng 44(10) (2019) DOI 10.1007/s13369-019-04095-z
J. Rico, J. Barateiro, J. Mata, A. Antunes, E. Cardoso. Applying Advanced Data Analytics and Machine Learning to Enhance the Safety Control of Dams. (2019) DOI 10.1007/978-3-030-15628-2_10
J. Hu, F. Ma. Zoned safety monitoring model for uplift pressures of concrete dams. Transactions of the Institute of Measurement and Control 41(14) (2019) DOI 10.1177/0142331219842281
S. Dargan, M. Kumar, M. Ayyagari, G. Kumar. A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning. Arch Computat Methods Eng (2019) DOI 10.1007/s11831-019-09344-w