I. Harari, G. Hauke. Semidiscrete formulations for transient transport at small time steps. Int. J. Numer. Meth. Fluids 54(6-8) (2007) DOI 10.1002/fld.1487
T. Sheu, H. Chen. A multi-dimensional monotonic finite element model for solving the convection-diffusion-reaction equation. Int. J. Numer. Meth. Fluids 39(7) (2002) DOI 10.1002/fld.351
H. Hernández, T. Massart, R. Peerlings, M. Geers. A stabilization technique for coupled convection-diffusion-reaction equations. Int J Numer Methods Eng 116(1) (2018) DOI 10.1002/nme.5914
E. López, N. Nigro, M. Storti, J. Toth. A minimal element distortion strategy for computational mesh dynamics. Int. J. Numer. Meth. Engng 69(9) (2007) DOI 10.1002/nme.1838
A. Lew, G. Buscaglia. A discontinuous-Galerkin-based immersed boundary method. Int. J. Numer. Meth. Engng 76(4) DOI 10.1002/nme.2312
H. Hernández, T. Massart, R. Peerlings, M. Geers. Towards an unconditionally stable numerical scheme for continuum dislocation transport. Modelling Simul. Mater. Sci. Eng. 23(8) (2015) DOI 10.1088/0965-0393/23/8/085013
H. Yoshioka, K. Unami, M. Fujihara. Internal Boundary Conditions for Solute Transport Equations in Locally One-dimensional Open Channel Networks. Journal of Rainwater Catchment Systems 19(2) DOI 10.7132/jrcsa.19_2_1
A. Corsini, F. Rispoli, A. Santoriello. Quadratic Petrov‐Galerkin finite elements for advective‐reactive features in turbomachinery CFD. Int Jnl of Num Meth for HFF 15(8) DOI 10.1108/09615530510625147
H. YOSHIOKA, N. KINJO, K. UNAMI, M. FUJIHARA. A Conforming Finite Element Method for Non-conservative Advection-diffusion Equations on Connected Graphs. J. JSCE 69(2) DOI 10.2208/jscejam.69.i_59
H. YOSHIOKA, K. UNAMI, M. FUJIHARA. Mathematical Analysis on a Conforming Finite Element Scheme for Advection-Dispersion-Decay Equations on Connected Graphs. J. JSCE 70(2) DOI 10.2208/jscejam.70.i_265
H. YOSHIOKA, K. UNAMI, M. FUJIHARA. A Petrov-Galerkin Finite Element Scheme for 1-D Time-independent Hamilton-Jacobi-Bellman Equations. J. JSCE 71(2) DOI 10.2208/jscejam.71.i_149
G. HAUKE, G. SANGALLI, M. DOWEIDAR. COMBINING ADJOINT STABILIZED METHODS FOR THE ADVECTION-DIFFUSION-REACTION PROBLEM. Math. Models Methods Appl. Sci. 17(02) (2011) DOI 10.1142/s0218202507001929
M. Cruchaga, D. Celentano. Numerical Analysis of Thermally Coupled Flow Problems with Interfaces and Phase-change Effects. International Journal of Computational Fluid Dynamics 16(4) DOI 10.1080/1061856021000025139
H. Hernández, T. Massart, R. Peerlings, M. Geers. Stabilization of coupled convection–diffusion-reaction equations for continuum dislocation transport. Modelling Simul. Mater. Sci. Eng. 27(5) (2019) DOI 10.1088/1361-651x/ab1b84
A. Limache, S. Idelsohn. On the issue that Finite Element discretizations violate, nodally, Clausius’s postulate of the second law of thermodynamics. Adv. Model. and Simul. in Eng. Sci. 3(1) (2016) DOI 10.1186/s40323-016-0066-8
A. Corsini, F. Rispoli, A. Santoriello. A new stabilized finite element method for advection-diffusion-reaction equations using quadratic elements. DOI 10.1007/978-3-662-08797-8_17
E. Oñate, A. Valls, J. García. FIC/FEM Formulation with Matrix Stabilizing Terms for Incompressible Flows at Low and High Reynolds Numbers. Comput Mech 38(4-5) (2006) DOI 10.1007/s00466-006-0060-y