P. Tiso. Optimal second order reduction basis selection for nonlinear transient analysis. (2011) DOI 10.1007/978-1-4419-9299-4_3
A. Radermacher, S. Reese. A comparison of projection-based model reduction concepts in the context of nonlinear biomechanics. Arch Appl Mech 83(8) (2013) DOI 10.1007/s00419-013-0742-9
C. Meyer, K. Holeczek, M. Meschenmoser, C. Lerch. Nonlinear model reduction for control of an active constrained layer damper. J. Phys.: Conf. Ser. 1106 (2018) DOI 10.1088/1742-6596/1106/1/012024
D. Amsallem, M. Zahr, C. Farhat. Nonlinear model order reduction based on local reduced-order bases. Int. J. Numer. Meth. Engng 92(10) (2012) DOI 10.1002/nme.4371
S. Niroomandi, I. Alfaro, D. González, E. Cueto, F. Chinesta. Model order reduction in hyperelasticity: a proper generalized decomposition approach. Int. J. Numer. Meth. Engng (2013) DOI 10.1002/nme.4531
D. González, E. Cueto, F. Chinesta. Real-time direct integration of reduced solid dynamics equations. Int. J. Numer. Meth. Engng 99(9) (2014) DOI 10.1002/nme.4691
C. Quesada, D. González, I. Alfaro, E. Cueto, F. Chinesta. Computational vademecums for real-time simulation of surgical cutting in haptic environments. Int. J. Numer. Meth. Engng 108(10) (2016) DOI 10.1002/nme.5252
O. Weeger, U. Wever, B. Simeon. On the use of modal derivatives for nonlinear model order reduction. Int. J. Numer. Meth. Engng 108(13) (2016) DOI 10.1002/nme.5267
K. Martynov, U. Wever. On polynomial hyperreduction for nonlinear structural mechanics. Int J Numer Methods Eng 118(12) (2019) DOI 10.1002/nme.6033
F. Naets, D. De Gregoriis, W. Desmet. Multi‐expansion modal reduction: A pragmatic semi–a priori model order reduction approach for nonlinear structural dynamics. Int J Numer Methods Eng 118(13) (2019) DOI 10.1002/nme.6034
D. Amsallem, M. Zahr, K. Washabaugh. Fast local reduced basis updates for the efficient reduction of nonlinear systems with hyper-reduction. Adv Comput Math 41(5) (2015) DOI 10.1007/s10444-015-9409-0
B. Peherstorfer, D. Butnaru, K. Willcox, H. Bungartz. Localized Discrete Empirical Interpolation Method. SIAM J. Sci. Comput. 36(1) DOI 10.1137/130924408
A. Cardona, S. Idelsohn. Solution of non-linear thermal transient problems by a reduction method. Int. J. Numer. Meth. Engng. 23(6) DOI 10.1002/nme.1620230604
P. Krysl, S. Lall, J. Marsden. Dimensional model reduction in non‐linear finite element dynamics of solids and structures. Int. J. Numer. Meth. Engng. 51(4) DOI 10.1002/nme.167
S. Niroomandi, I. Alfaro, E. Cueto, F. Chinesta. Model order reduction for hyperelastic materials. Int. J. Numer. Meth. Engng DOI 10.1002/nme.2733
B. Stanford, P. Beran. Cost reduction techniques for the design of non-linear flapping wing structures. Int. J. Numer. Meth. Engng. 88(6) (2011) DOI 10.1002/nme.3185
X. Yin, P. Qian, L. Qian. Improved Craig-Bampton method for transient analysis of structures with large-scale plastic deformation. J VIBROENG 19(2) DOI 10.21595/jve.2016.17288
C. Maruccio, G. Quaranta, G. Grassi. Reduced-order modeling with multiple scales of electromechanical systems for energy harvesting. Eur. Phys. J. Spec. Top. 228(7) (2019) DOI 10.1140/epjst/e2019-800173-x
A. Robinson, C. Chen. Improved Time‐History Analysis for Structural Dynamics. II: Reduction of Effective Number of Degrees of Freedom. Journal of Engineering Mechanics 119(12) DOI 10.1061/(asce)0733-9399(1993)119:12(2514)
S. Vukazich, K. Mish, K. Romstad. Nonlinear Dynamic Response of Frames Using Lanczos Modal Analysis. Journal of Structural Engineering 122(12) DOI 10.1061/(asce)0733-9445(1996)122:12(1418)
F. Kogelbauer, G. Haller. Rigorous Model Reduction for a Damped-Forced Nonlinear Beam Model: An Infinite-Dimensional Analysis. J Nonlinear Sci 28(3) (2018) DOI 10.1007/s00332-018-9443-4
S. Chien, C. Hu, C. Huang, Y. Tsai, W. Lin. Deformation simulation based on model reduction with rigidity-guided sampling. Vis Comput 34(6-8) (2018) DOI 10.1007/s00371-018-1533-7
P. Tiso, E. Jansen, M. Abdalla. Reduction Method for Finite Element Nonlinear Dynamic Analysis of Shells. AIAA Journal 49(10) DOI 10.2514/1.j051003
L. Wu, P. Tiso, F. van Keulen. Interface Reduction with Multilevel Craig–Bampton Substructuring for Component Mode Synthesis. AIAA Journal 56(5) DOI 10.2514/1.j056196
R. Mukherjee, X. Wu, H. Wang. Incremental Deformation Subspace Reconstruction. Computer Graphics Forum 35(7) (2016) DOI 10.1111/cgf.13014
P. Tiso, D. Rixen. Reduction methods for MEMS nonlinear dynamic analysis. (2011) DOI 10.1007/978-1-4419-9719-7_6
P. Léger, E. Wilson. Generation of load dependent Ritz transformation vectors in structural dynamics. Engineering Computations 4(4) DOI 10.1108/eb023709
C. Sombroek, L. Renson, P. Tiso, G. Kerschen. Bridging the Gap Between Nonlinear Normal Modes and Modal Derivatives. DOI 10.1007/978-3-319-15221-9_32
F. Pichler, W. Witteveen, P. Fischer. Efficient and Accurate Consideration of Nonlinear Joint Contact Within Multibody Simulation. DOI 10.1007/978-3-319-15221-9_38
P. van der Valk, S. Voormeeren, P. de Valk, D. Rixen. Dynamic Models for Load Calculation Procedures of Offshore Wind Turbine Support Structures: Overview, Assessment, and Outlook. 10(4) DOI 10.1115/1.4028136
F. Pichler, W. Witteveen, P. Fischer. Reduced-Order Modeling of Preloaded Bolted Structures in Multibody Systems by the Use of Trial Vector Derivatives. 12(5) (2017) DOI 10.1115/1.4036989
S. Jain, P. Tiso. Simulation-Free Hyper-Reduction for Geometrically Nonlinear Structural Dynamics: A Quadratic Manifold Lifting Approach. 13(7) (2018) DOI 10.1115/1.4040021
A. Martin, F. Thouverez. Dynamic Analysis and Reduction of a Cyclic Symmetric System Subjected to Geometric Nonlinearities. 141(4) (2018) DOI 10.1115/1.4041001
D. De Gregoriis, F. Naets, P. Kindt, W. Desmet. Application of a Priori Hyper-Reduction to the Nonlinear Dynamic Finite Element Simulation of a Rolling Car Tire. 14(11) (2019) DOI 10.1115/1.4043892
L. Zhou, J. Simon, S. Reese. Proper orthogonal decomposition for substructures in nonlinear finite element analysis: coupling by means of tied contact. Arch Appl Mech 88(11) (2018) DOI 10.1007/s00419-018-1427-1
S. Voormeeren, P. van der Valk, B. Nortier, D. Molenaar, D. Rixen. Accurate and efficient modeling of complex offshore wind turbine support structures using augmented superelements. Wind Energ. 17(7) (2013) DOI 10.1002/we.1617
R. Kapania, C. Byun. Reduction methods based on eigenvectors and Ritz vectors for nonlinear transient analysis. Computational Mechanics 11(1) DOI 10.1007/bf00370072
M. Allen, D. Rixen, M. van der Seijs, P. Tiso, T. Abrahamsson, R. Mayes. Model Reduction Concepts and Substructuring Approaches for Nonlinear Systems. (2019) DOI 10.1007/978-3-030-25532-9_6
J. Rutzmoser, D. Rixen. Model Order Reduction for Geometric Nonlinear Structures with Variable State-Dependent Basis. (2014) DOI 10.1007/978-3-319-04501-6_43
C. Liao. An unconditionally stable implicit direct integration method for linear structural dynamics. Journal of the Chinese Institute of Engineers 9(4) DOI 10.1080/02533839.1986.9676898
S. Andersen, P. Poulsen. A Taylor basis for kinematic nonlinear real‐time simulations. Part II: The Taylor basis. Earthquake Engng Struct Dyn 48(8) (2019) DOI 10.1002/eqe.3175
S. Andersen, P. Poulsen. A Taylor basis for kinematic nonlinear real‐time simulations. Part I: The complete modal derivatives. Earthquake Engng Struct Dyn 48(9) (2019) DOI 10.1002/eqe.3176
B. Mohraz, F. Elghadamsi, C. Chang. An incremental mode-superposition for non-linear dynamic analysis. Earthquake Engng. Struct. Dyn. 20(5) DOI 10.1002/eqe.4290200507
P. Léger, S. Dussault. Non-linear seismic response analysis using vector superposition methods. Earthquake Engng. Struct. Dyn. 21(2) DOI 10.1002/eqe.4290210205
R. Villaverde, M. Hanna. Efficient mode superposition algorithm for seismic analysis of non-linear structures. Earthquake Engng. Struct. Dyn. 21(10) DOI 10.1002/eqe.4290211002
G. Haller, S. Ponsioen. Exact model reduction by a slow–fast decomposition of nonlinear mechanical systems. Nonlinear Dyn 90(1) (2017) DOI 10.1007/s11071-017-3685-9
S. Jain, T. Breunung, G. Haller. Fast computation of steady-state response for high-degree-of-freedom nonlinear systems. Nonlinear Dyn 97(1) (2019) DOI 10.1007/s11071-019-04971-1
A. Givois, A. Grolet, O. Thomas, J. Deü. On the frequency response computation of geometrically nonlinear flat structures using reduced-order finite element models. Nonlinear Dyn 97(2) (2019) DOI 10.1007/s11071-019-05021-6
H. Obrecht, W. Goebel, W. Wunderlich. Nonlinear Dynamic Analysis of Shells of Revolution. DOI 10.1007/978-3-642-83040-2_35
L. Wu, P. Tiso. Nonlinear model order reduction for flexible multibody dynamics: a modal derivatives approach. Multibody Syst Dyn 36(4) (2015) DOI 10.1007/s11044-015-9476-5
F. Pichler, W. Witteveen, P. Fischer. A complete strategy for efficient and accurate multibody dynamics of flexible structures with large lap joints considering contact and friction. Multibody Syst Dyn 40(4) (2016) DOI 10.1007/s11044-016-9555-2
L. Wu, P. Tiso, K. Tatsis, E. Chatzi, F. van Keulen. A modal derivatives enhanced Rubin substructuring method for geometrically nonlinear multibody systems. Multibody Syst Dyn 45(1) (2018) DOI 10.1007/s11044-018-09644-2
P. Tiso, E. Jansen. A Finite Element Based Reduction Method for Nonlinear Dynamics of Structures. (2012) DOI 10.2514/6.2005-1867
P. Tiso, E. Jansen, M. Abdalla. A Reduction Method for Finite Elements Nonlinear Dynamic Analysis of Shells. (2012) DOI 10.2514/6.2006-1746
L. Demasi, E. Livne. The Structural Order Reduction Challenge in the Case of Geometrically Nonlinear Joined-Wing Confgurations. (2012) DOI 10.2514/6.2007-2052
L. Demasi, A. Palacios. A Reduced Order Nonlinear Aeroelastic Analysis of Joined Wings Based on the Proper Orthogonal Decomposition. (2012) DOI 10.2514/6.2010-2722
N. Teunisse, L. Demasi, P. Tiso, R. Cavallaro. A Computational Method for Structurally Nonlinear Joined Wings Based on Modal Derivatives. (2014) DOI 10.2514/6.2014-0494
N. Teunisse, P. Tiso, L. Demasi, R. Cavallaro. Reduced Order Methods and Algorithms for Structurally Nonlinear Joined Wings. (2015) DOI 10.2514/6.2015-0699
O. Weeger, U. Wever, B. Simeon. Nonlinear frequency response analysis of structural vibrations. Comput Mech 54(6) (2014) DOI 10.1007/s00466-014-1070-9
A. Gaonkar, S. Kulkarni. Application of multilevel scheme and two level discretization for POD based model order reduction of nonlinear transient heat transfer problems. Comput Mech 55(1) (2014) DOI 10.1007/s00466-014-1089-y
A. Gaonkar, S. Kulkarni. Model order reduction for dynamic simulation of slender beams undergoing large rotations. Comput Mech 59(5) (2017) DOI 10.1007/s00466-017-1374-7
Y. Teng, M. Otaduy, T. Kim. Simulating articulated subspace self-contact. TOG 33(4) DOI 10.1145/2601097.2601181