E. Oñate, A. Valls, J. García. Computation of turbulent flows using a finite calculus–finite element formulation. Int. J. Numer. Meth. Fluids 54(6-8) (2007) DOI 10.1002/fld.1476
P. Nadukandi, E. Oñate, J. Garcia. Analysis of a consistency recovery method for the 1D convection–diffusion equation using linear finite elements. Int. J. Numer. Meth. Fluids 57(9) DOI 10.1002/fld.1863
E. Oñate, P. Nadukandi, S. Idelsohn, J. García, C. Felippa. A family of residual-based stabilized finite element methods for Stokes flows. Int. J. Numer. Meth. Fluids 65(1-3) (2010) DOI 10.1002/fld.2468
E. Oñate, A. Franci, J. Carbonell. Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses. Int. J. Numer. Meth. Fluids 74(10) (2014) DOI 10.1002/fld.3870
I. de-Pouplana, E. Oñate. A FIC-based stabilized mixed finite element method with equal order interpolation for solid-pore fluid interaction problems. Int. J. Numer. Anal. Meth. Geomech. 41(1) (2016) DOI 10.1002/nag.2550
J. Liao, Z. Zhuang. A consistent projection-based SUPG/PSPG XFEM for incompressible two-phase flows. Acta Mech Sin 28(5) (2012) DOI 10.1007/s10409-012-0103-x
J. Rojek, E. Oñate, R. Taylor. CBS-based stabilization in explicit solid dynamics. Int. J. Numer. Meth. Engng 66(10) DOI 10.1002/nme.1689
E. Oñate, S. Idelsohn, C. Felippa. Consistent pressure Laplacian stabilization for incompressible continua via higher-order finite calculus. Int. J. Numer. Meth. Engng. 87(1-5) (2010) DOI 10.1002/nme.3021
V. Ruas, R. Leal-Toledo, M. Kischinhevsky. Elementos finitos em formulação mista de mínimos quadrados para a simulação da convecção-difusão em regime transiente. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 29(1) DOI 10.1016/j.rimni.2012.12.002
E. Oñate, A. Franci, J. Carbonell. A Particle Finite Element Method (PFEM) for Coupled Thermal Analysis of Quasi and Fully Incompressible Flows and Fluid-Structure Interaction Problems. (2014) DOI 10.1007/978-3-319-06136-8_6
G. Chen, L. Qian, J. Ma. A Gradient Stable Node-Based Smoothed Finite Element Method for Solid Mechanics Problems. Shock and Vibration 2019 DOI 10.1155/2019/8610790
O. Eugenio. Finite increment calculus (FIC): a framework for deriving enhanced computational methods in mechanics. Adv. Model. and Simul. in Eng. Sci. 3(1) (2016) DOI 10.1186/s40323-016-0065-9
C. Felippa, E. Oñate, S. Idelsohn. Variational Framework for FIC Formulations in Continuum Mechanics: High Order Tensor-Derivative Transformations and Invariants. Arch Computat Methods Eng 25(4) (2017) DOI 10.1007/s11831-017-9245-0
C. Felippa, E. Oñate. Nodally exact Ritz discretizations of 1D diffusion–absorption and Helmholtz equations by variational FIC and modified equation methods. Comput Mech 39(2) (2006) DOI 10.1007/s00466-005-0011-z
E. Oñate, A. Valls, J. García. FIC/FEM Formulation with Matrix Stabilizing Terms for Incompressible Flows at Low and High Reynolds Numbers. Comput Mech 38(4-5) (2006) DOI 10.1007/s00466-006-0060-y