Line 3: | Line 3: | ||
Debris flows overriding steep valleys can cause a significant decrease in bed friction resistance due to undrained excess pore water pressure, leading to an exponential increase in both destructiveness and volume. This study develops a two-phase numerical model based on Smoothed Particle Hydrodynamics to simulate the progressive entrainment behavior of debris flow accurately. The fluid and bed-sediment materials are modeled using the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou (HBP) constitutive model. The mass erosion behavior of debris flow is achieved and augmented by incorporating the Drucker-Prager (DP) softening model, which accounts for variations in the pore water pressure ratio across different saturation states. A straightforward phase-change approach is implemented according to the mutation of effective viscosity to prevent any minute displacements of viscoplastic materials when subjected to steep inclinations. The multi-phase model has been compared with the large scale flume experiments conducted by the United States Geological Survey. The 3-D numerical results obtained from the rigid bed, dry and wet erodible bed exhibit a good agreement with the experimental data, encompassing flow momentum feedback and erosion patterns. This paper initially attempts to simulate the entrainment of multiple phases in a steep valley by incorporating viscoplastic flow. | Debris flows overriding steep valleys can cause a significant decrease in bed friction resistance due to undrained excess pore water pressure, leading to an exponential increase in both destructiveness and volume. This study develops a two-phase numerical model based on Smoothed Particle Hydrodynamics to simulate the progressive entrainment behavior of debris flow accurately. The fluid and bed-sediment materials are modeled using the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou (HBP) constitutive model. The mass erosion behavior of debris flow is achieved and augmented by incorporating the Drucker-Prager (DP) softening model, which accounts for variations in the pore water pressure ratio across different saturation states. A straightforward phase-change approach is implemented according to the mutation of effective viscosity to prevent any minute displacements of viscoplastic materials when subjected to steep inclinations. The multi-phase model has been compared with the large scale flume experiments conducted by the United States Geological Survey. The 3-D numerical results obtained from the rigid bed, dry and wet erodible bed exhibit a good agreement with the experimental data, encompassing flow momentum feedback and erosion patterns. This paper initially attempts to simulate the entrainment of multiple phases in a steep valley by incorporating viscoplastic flow. | ||
+ | |||
+ | == Full Paper == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_204421066pap_177.pdf</pdf> |
Debris flows overriding steep valleys can cause a significant decrease in bed friction resistance due to undrained excess pore water pressure, leading to an exponential increase in both destructiveness and volume. This study develops a two-phase numerical model based on Smoothed Particle Hydrodynamics to simulate the progressive entrainment behavior of debris flow accurately. The fluid and bed-sediment materials are modeled using the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou (HBP) constitutive model. The mass erosion behavior of debris flow is achieved and augmented by incorporating the Drucker-Prager (DP) softening model, which accounts for variations in the pore water pressure ratio across different saturation states. A straightforward phase-change approach is implemented according to the mutation of effective viscosity to prevent any minute displacements of viscoplastic materials when subjected to steep inclinations. The multi-phase model has been compared with the large scale flume experiments conducted by the United States Geological Survey. The 3-D numerical results obtained from the rigid bed, dry and wet erodible bed exhibit a good agreement with the experimental data, encompassing flow momentum feedback and erosion patterns. This paper initially attempts to simulate the entrainment of multiple phases in a steep valley by incorporating viscoplastic flow.
Published on 23/11/23
Submitted on 23/11/23
Volume Particle-Based Methods for Natural Hazards Simulation, 2023
DOI: 10.23967/c.particles.2023.029
Licence: CC BY-NC-SA license
Are you one of the authors of this document?