Line 3: Line 3:
  
 
In this paper, the effects of geometrical imperfections observed in a lattice structure fabricated by metal 3D printer on the compressive response were investigated by using FE simulation. Geometrical imperfections which are due to excessive heat transfer and the melting of unnecessary metal powder during the fabrication process was observed using a 3D X-Ray microscope (XRM) machine. Based on the observation, two types of geometrical imperfections (strut diameter deviation and the center-axis offset) were measured, and the quantities of these imperfections on the mechanical properties of lattice block were discussed. By introducing imperfections to the FE model, a likelihood of reduced mechanical properties can be potentially adverted. In addition, by comparing the amount of geometrical imperfections, the initial stiffness and plastic collapse strength in the models based on different strut diameters, we proposed appropriate manufacturing conditions for the lattice blocks that would minimize the reduction of their mechanical properties.
 
In this paper, the effects of geometrical imperfections observed in a lattice structure fabricated by metal 3D printer on the compressive response were investigated by using FE simulation. Geometrical imperfections which are due to excessive heat transfer and the melting of unnecessary metal powder during the fabrication process was observed using a 3D X-Ray microscope (XRM) machine. Based on the observation, two types of geometrical imperfections (strut diameter deviation and the center-axis offset) were measured, and the quantities of these imperfections on the mechanical properties of lattice block were discussed. By introducing imperfections to the FE model, a likelihood of reduced mechanical properties can be potentially adverted. In addition, by comparing the amount of geometrical imperfections, the initial stiffness and plastic collapse strength in the models based on different strut diameters, we proposed appropriate manufacturing conditions for the lattice blocks that would minimize the reduction of their mechanical properties.
 +
 +
== Full Paper ==
 +
<pdf>Media:Draft_Sanchez Pinedo_991895574pap_147.pdf</pdf>

Revision as of 14:12, 16 November 2023

Abstract

In this paper, the effects of geometrical imperfections observed in a lattice structure fabricated by metal 3D printer on the compressive response were investigated by using FE simulation. Geometrical imperfections which are due to excessive heat transfer and the melting of unnecessary metal powder during the fabrication process was observed using a 3D X-Ray microscope (XRM) machine. Based on the observation, two types of geometrical imperfections (strut diameter deviation and the center-axis offset) were measured, and the quantities of these imperfections on the mechanical properties of lattice block were discussed. By introducing imperfections to the FE model, a likelihood of reduced mechanical properties can be potentially adverted. In addition, by comparing the amount of geometrical imperfections, the initial stiffness and plastic collapse strength in the models based on different strut diameters, we proposed appropriate manufacturing conditions for the lattice blocks that would minimize the reduction of their mechanical properties.

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 16/11/23
Submitted on 16/11/23

DOI: 10.23967/c.simam.2023.013
Licence: CC BY-NC-SA license

Document Score

0

Views 1
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?