Line 46: | Line 46: | ||
− | [[Image:draft_Samper_526155048-image3.png|center| | + | [[Image:draft_Samper_526155048-image3.png|center|300px]] |
<big>* Finite element methods for linear and non </big> | <big>* Finite element methods for linear and non </big> | ||
Line 57: | Line 57: | ||
<big>* | <big>* | ||
− | [[Image:draft_Samper_526155048-image9.png|center| | + | [[Image:draft_Samper_526155048-image9.png|center|300px]] |
− | [[Image:draft_Samper_526155048-image10.png|center| | + | [[Image:draft_Samper_526155048-image10.png|center|300px]] |
Finite element methods for biomechanical devices analysis and</big> | Finite element methods for biomechanical devices analysis and</big> | ||
Line 71: | Line 71: | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-picture-Group 20.svg|center| | + | [[Image:draft_Samper_526155048-picture-Group 20.svg|center|300px]] |
</big> | </big> | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image17-c.png|center| | + | [[Image:draft_Samper_526155048-image17-c.png|center|300px]] |
</big> | </big> | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image3.png|center| | + | [[Image:draft_Samper_526155048-image3.png|center|300px]] |
</big> | </big> | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image19-c.png|center| | + | [[Image:draft_Samper_526155048-image19-c.png|center|300px]] |
</big> | </big> | ||
Line 103: | Line 103: | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image24-c.png|center| | + | [[Image:draft_Samper_526155048-image24-c.png|center|300px]] |
− | [[Image:draft_Samper_526155048-image25-c.png|center| | + | [[Image:draft_Samper_526155048-image25-c.png|center|300px]] |
</big> | </big> | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image3.png|center| | + | [[Image:draft_Samper_526155048-image3.png|center|300px]] |
</big> | </big> | ||
<big>* | <big>* | ||
− | [[Image:draft_Samper_526155048-image27.png|center| | + | [[Image:draft_Samper_526155048-image27.png|center|300px]] |
− | [[Image:draft_Samper_526155048-image28-c.png|center| | + | [[Image:draft_Samper_526155048-image28-c.png|center|300px]] |
Development of simulation platform for cardiovascular problems.</big> | Development of simulation platform for cardiovascular problems.</big> | ||
Line 121: | Line 121: | ||
<big>* | <big>* | ||
− | [[Image:draft_Samper_526155048-image29.jpeg|center| | + | [[Image:draft_Samper_526155048-image29.jpeg|center|300px]] |
Finite element for the study of cholesterol and platelets vessel absorption.</big> | Finite element for the study of cholesterol and platelets vessel absorption.</big> | ||
Line 127: | Line 127: | ||
<big>* ''' | <big>* ''' | ||
− | [[Image:draft_Samper_526155048-image30.jpeg|center| | + | [[Image:draft_Samper_526155048-image30.jpeg|center|300px]] |
'''Reconstruction of real geometries starting by DICOM images.</big> | '''Reconstruction of real geometries starting by DICOM images.</big> | ||
Line 133: | Line 133: | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image31.png|center| | + | [[Image:draft_Samper_526155048-image31.png|center|300px]] |
</big> | </big> | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image32.jpeg|center| | + | [[Image:draft_Samper_526155048-image32.jpeg|center|300px]] |
</big> | </big> | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image33.jpeg|center| | + | [[Image:draft_Samper_526155048-image33.jpeg|center|300px]] |
</big> | </big> | ||
− | [[Image:draft_Samper_526155048-image3.png|center| | + | [[Image:draft_Samper_526155048-image3.png|center|300px]] |
<big>* | <big>* | ||
− | [[Image:draft_Samper_526155048-image35.jpeg|center| | + | [[Image:draft_Samper_526155048-image35.jpeg|center|300px]] |
− | [[Image:draft_Samper_526155048-image36.jpeg|center| | + | [[Image:draft_Samper_526155048-image36.jpeg|center|300px]] |
Development of biocompatible geometries for internal or external devices (stents, internal prosthesis, etc).</big> | Development of biocompatible geometries for internal or external devices (stents, internal prosthesis, etc).</big> | ||
Line 158: | Line 158: | ||
<big>* | <big>* | ||
− | [[Image:draft_Samper_526155048-image37.jpeg|center| | + | [[Image:draft_Samper_526155048-image37.jpeg|center|300px]] |
New constitutive models for biomaterial and shape memory materials.</big> | New constitutive models for biomaterial and shape memory materials.</big> | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image38.jpeg|center| | + | [[Image:draft_Samper_526155048-image38.jpeg|center|300px]] |
</big> | </big> | ||
Line 170: | Line 170: | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image39.jpeg|center| | + | [[Image:draft_Samper_526155048-image39.jpeg|center|300px]] |
</big> | </big> | ||
<div style="text-align: right; direction: ltr; margin-left: 1em;"> | <div style="text-align: right; direction: ltr; margin-left: 1em;"> | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image40.jpeg|center| | + | [[Image:draft_Samper_526155048-image40.jpeg|center|300px]] |
</big></div> | </big></div> | ||
− | [[Image:draft_Samper_526155048-image3.png|center| | + | [[Image:draft_Samper_526155048-image3.png|center|300px]] |
<big>* | <big>* | ||
− | [[Image:draft_Samper_526155048-image42.png|center| | + | [[Image:draft_Samper_526155048-image42.png|center|300px]] |
Development of artificial neural networks (ANN) for optimization, inverse analysis and medical decision support fast decision taking.</big> | Development of artificial neural networks (ANN) for optimization, inverse analysis and medical decision support fast decision taking.</big> | ||
Line 188: | Line 188: | ||
<big>* | <big>* | ||
− | [[Image:draft_Samper_526155048-image43.jpeg|center| | + | [[Image:draft_Samper_526155048-image43.jpeg|center|300px]] |
Development of artificial intelligence techniques based in agent simulations.</big> | Development of artificial intelligence techniques based in agent simulations.</big> | ||
Line 197: | Line 197: | ||
<div style="text-align: right; direction: ltr; margin-left: 1em;"> | <div style="text-align: right; direction: ltr; margin-left: 1em;"> | ||
− | [[Image:draft_Samper_526155048-image44.jpeg|center| | + | [[Image:draft_Samper_526155048-image44.jpeg|center|300px]] |
</div> | </div> | ||
<div style="text-align: right; direction: ltr; margin-left: 1em;"> | <div style="text-align: right; direction: ltr; margin-left: 1em;"> | ||
− | [[Image:draft_Samper_526155048-image45.jpeg|center| | + | [[Image:draft_Samper_526155048-image45.jpeg|center|300px]] |
</div> | </div> | ||
Line 208: | Line 208: | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image3.png|center| | + | [[Image:draft_Samper_526155048-image3.png|center|300px]] |
</big> | </big> | ||
<big>* | <big>* | ||
− | [[Image:draft_Samper_526155048-image47.jpeg|center| | + | [[Image:draft_Samper_526155048-image47.jpeg|center|300px]] |
Finite element methods for the analysis of brain cellular activity in pathological and physiological scenarios.</big> | Finite element methods for the analysis of brain cellular activity in pathological and physiological scenarios.</big> | ||
Line 218: | Line 218: | ||
<big>* | <big>* | ||
− | [[Image:draft_Samper_526155048-image48.jpeg|center| | + | [[Image:draft_Samper_526155048-image48.jpeg|center|300px]] |
Statistical methods to fast response in biochemical brain analysis.</big> | Statistical methods to fast response in biochemical brain analysis.</big> | ||
Line 226: | Line 226: | ||
− | [[Image:draft_Samper_526155048-image49.png|center| | + | [[Image:draft_Samper_526155048-image49.png|center|300px]] |
− | [[Image:draft_Samper_526155048-image50.png|center| | + | [[Image:draft_Samper_526155048-image50.png|center|300px]] |
<div style="text-align: right; direction: ltr; margin-left: 1em;"> | <div style="text-align: right; direction: ltr; margin-left: 1em;"> | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image3.png|center| | + | [[Image:draft_Samper_526155048-image3.png|center|300px]] |
</big></div> | </big></div> | ||
− | [[Image:draft_Samper_526155048-image3.png|center| | + | [[Image:draft_Samper_526155048-image3.png|center|300px]] |
==Magnetic Resonance (2D) == | ==Magnetic Resonance (2D) == | ||
Line 245: | Line 245: | ||
− | [[Image:draft_Samper_526155048-image52.jpeg|center| | + | [[Image:draft_Samper_526155048-image52.jpeg|center|300px]] |
− | [[Image:draft_Samper_526155048-image53.jpeg|center| | + | [[Image:draft_Samper_526155048-image53.jpeg|center|300px]] |
− | [[Image:draft_Samper_526155048-image54.png|center| | + | [[Image:draft_Samper_526155048-image54.png|center|300px]] |
− | [[Image:draft_Samper_526155048-image55.png|center| | + | [[Image:draft_Samper_526155048-image55.png|center|300px]] |
− | [[Image:draft_Samper_526155048-image56.png|center| | + | [[Image:draft_Samper_526155048-image56.png|center|300px]] |
==Deformable isosurface model== | ==Deformable isosurface model== | ||
Line 260: | Line 260: | ||
− | [[Image:draft_Samper_526155048-image57-c.jpeg|center| | + | [[Image:draft_Samper_526155048-image57-c.jpeg|center|300px]] |
− | [[Image:draft_Samper_526155048-image58-c.jpeg|center| | + | [[Image:draft_Samper_526155048-image58-c.jpeg|center|300px]] |
==Meshing of heart== | ==Meshing of heart== | ||
Line 270: | Line 270: | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image3.png|center| | + | [[Image:draft_Samper_526155048-image3.png|center|300px]] |
</big> | </big> | ||
<big>* | <big>* | ||
− | [[Image:draft_Samper_526155048-image60.png|center| | + | [[Image:draft_Samper_526155048-image60.png|center|300px]] |
Segmentation and 3D reconstruction </big> | Segmentation and 3D reconstruction </big> | ||
Line 284: | Line 284: | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image61.jpeg|center| | + | [[Image:draft_Samper_526155048-image61.jpeg|center|300px]] |
− | [[Image:draft_Samper_526155048-image62-c.png|center| | + | [[Image:draft_Samper_526155048-image62-c.png|center|300px]] |
− | [[Image:draft_Samper_526155048-image63.png|center| | + | [[Image:draft_Samper_526155048-image63.png|center|300px]] |
</big> | </big> | ||
Line 298: | Line 298: | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image64-c.jpeg|center| | + | [[Image:draft_Samper_526155048-image64-c.jpeg|center|300px]] |
</big> | </big> | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image65-c.jpeg|center| | + | [[Image:draft_Samper_526155048-image65-c.jpeg|center|300px]] |
</big> | </big> | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image66-c.jpeg|center| | + | [[Image:draft_Samper_526155048-image66-c.jpeg|center|300px]] |
</big> | </big> | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image3.png|center| | + | [[Image:draft_Samper_526155048-image3.png|center|300px]] |
</big> | </big> | ||
<big>* | <big>* | ||
− | [[Image:draft_Samper_526155048-image68.jpeg|center| | + | [[Image:draft_Samper_526155048-image68.jpeg|center|300px]] |
− | [[Image:draft_Samper_526155048-image69.jpeg|center| | + | [[Image:draft_Samper_526155048-image69.jpeg|center|300px]] |
Finite Element Method for the simulation of the urinary bladder and its parts like the destrusor (little smooth muscle)</big> | Finite Element Method for the simulation of the urinary bladder and its parts like the destrusor (little smooth muscle)</big> | ||
Line 322: | Line 322: | ||
<big>* | <big>* | ||
− | [[Image:draft_Samper_526155048-image70.jpeg|center| | + | [[Image:draft_Samper_526155048-image70.jpeg|center|300px]] |
Characterization of destrusor-tissue model is based in the representation (based on hyperelastic matrix, and viscoelastic fibres)</big> | Characterization of destrusor-tissue model is based in the representation (based on hyperelastic matrix, and viscoelastic fibres)</big> | ||
<big>* | <big>* | ||
− | [[Image:draft_Samper_526155048-image73.png|center| | + | [[Image:draft_Samper_526155048-image73.png|center|300px]] |
Analisys of the interaction between bladder wall with urine modelled via the Particle Finite Element Method (PFE</big> | Analisys of the interaction between bladder wall with urine modelled via the Particle Finite Element Method (PFE</big> | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image3.png|center| | + | [[Image:draft_Samper_526155048-image3.png|center|300px]] |
</big> | </big> | ||
Line 338: | Line 338: | ||
<big>* | <big>* | ||
− | [[Image:draft_Samper_526155048-image74.png|center| | + | [[Image:draft_Samper_526155048-image74.png|center|300px]] |
− | [[Image:draft_Samper_526155048-image75.png|center| | + | [[Image:draft_Samper_526155048-image75.png|center|300px]] |
− | [[Image:draft_Samper_526155048-image76.png|center| | + | [[Image:draft_Samper_526155048-image76.png|center|300px]] |
Development of input data technology for large scale computational problems.</big> | Development of input data technology for large scale computational problems.</big> | ||
Line 352: | Line 352: | ||
<big> | <big> | ||
− | [[Image:draft_Samper_526155048-image77.png|center| | + | [[Image:draft_Samper_526155048-image77.png|center|300px]] |
</big> | </big> | ||
Line 369: | Line 369: | ||
<div style="text-align: right; direction: ltr; margin-left: 1em;"> | <div style="text-align: right; direction: ltr; margin-left: 1em;"> | ||
<big>''' | <big>''' | ||
− | [[Image:draft_Samper_526155048-picture-Group 65.svg|center| | + | [[Image:draft_Samper_526155048-picture-Group 65.svg|center|300px]] |
'''<br/></big></div> | '''<br/></big></div> | ||
Line 422: | Line 422: | ||
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"> | <div class="center" style="width: auto; margin-left: auto; margin-right: auto;"> | ||
''' | ''' | ||
− | [[Image:draft_Samper_526155048-image87-c.jpeg|center| | + | [[Image:draft_Samper_526155048-image87-c.jpeg|center|300px]] |
− | [[Image:draft_Samper_526155048-image88-c.jpeg|center| | + | [[Image:draft_Samper_526155048-image88-c.jpeg|center|300px]] |
'''</div> | '''</div> | ||
Line 440: | Line 440: | ||
== | == | ||
− | [[Image:draft_Samper_526155048-image89-c.png|center| | + | [[Image:draft_Samper_526155048-image89-c.png|center|300px]] |
== | == | ||
Line 454: | Line 454: | ||
== | == | ||
− | [[Image:draft_Samper_526155048-image90-c.jpeg|center| | + | [[Image:draft_Samper_526155048-image90-c.jpeg|center|300px]] |
== | == |
Centre Internacional de Metodes Numerics a l'Enginyeria - CIMNE, Barcelona, Spain
Research Lines & RTD Project in Biomedical Engineering:
Computational Fluid Dynamics
Solid and Structural Biomechanics
Health Decision Support Systems
Cardiovascular System
Biomaterials
Artificial Intelligence
Neurosciences
Medical-GiD
Urology
Pre and post processing
* Stabilized finite element and finite difference methods in incompressible biofluid mechanics.
* Bio-Absorption theory application in vessel structures for atheroma plack and biochemical studies.
* Finite element methods for fluid flow and analysis.
* Numerical methods applied in multidisciplinary problems in fluid biomechanics (fluid structure interaction, thermal flows, absorption theory etc).
* Coupling 3D with 2D or 1D models to improve study details.
* Finite element methods for linear and non
linear analysis of solids structures.
* Coupled problems in solid biomechanics
(fluid structure interaction, thermal flows, absorption theory etc).
*
Finite element methods for biomechanical devices analysis and
prototype design (stent, prosthesis, etc).
* Finite element methods analysis of solid
biology structures (hearth mechanics,
vessel stresses response, etc).
* Development of intelligent platform to help physician work, informatization of routinely medical work.
* Finite element use to improve medical diagnosis and to perfect analysis processes.
* Biostatistical models applied ad hoc for several medical problems and cases.
*
Bioinformatic technology solutions to coupled finite elements methods with biostatistical tools and artificial intelligence.
* Monte-Carlo methods for stochastic analysis in computational biomechanics and in biofluid dynamics.
* Parameter identification via stochastic methods.
* Coupling of TIC solutions, stochastic methods and finite element methods to improve and get faster medical analysis and decision
*
Development of simulation platform for cardiovascular problems.
* Finite element for the simulation of problematic scenarios (aneurism, lumen obstruction, deformation, etc).
*
Finite element for the study of cholesterol and platelets vessel absorption.
* 1D-Vessel model of whole human body. General information coupled to specific 2D or 3D studies.
*
Reconstruction of real geometries starting by DICOM images.
* Automatic 2D and 3D geometries for vessel obstruction or aneurisms formation analysis.
*
Development of biocompatible geometries for internal or external devices (stents, internal prosthesis, etc).
* Finite element for stress testes with biomaterials and medical devices.
* Design and study of biocompatible devices for human medical use or experimental use.
*
New constitutive models for biomaterial and shape memory materials.
* Parameter identifications in constitutive
models of biomaterials.
*
Development of artificial neural networks (ANN) for optimization, inverse analysis and medical decision support fast decision taking.
* Integration of artificial neural networks (ANN) in decision support systems combining wireless sensors, computer simulations methods and artificial intelligence technology.
*
Development of artificial intelligence techniques based in agent simulations.
* Applications of artificial neural networks (ANN) technology for parameter identification in constitutive laws
* Development of intelligent finite element methods via Al Technology
*
Finite element methods for the analysis of brain cellular activity in pathological and physiological scenarios.
* 1D Finite element methods to study the propagations of neuronal signals in complex networks.
*
Statistical methods to fast response in biochemical brain analysis.
* Dementia diseases studies: finite element methods and bioinformatic solutions to reinforce the investigation about the causes of several brain dysfunction.
* Amyloids, Polymers and Cerebral Membrane Characterization
*
Segmentation and 3D reconstruction
of medical images.
* Meshing of segmented geometries: creation of surface meshes or volume meshes.
* Visualization of 4D images (3D + time), creation of flux vectors and study of time developing in the image.
* Anatomical real cases.
* Coupling with simulation programs and with finite element methods solver.
* Friendly platform and portability of the informatics solutions adopted.
*
Finite Element Method for the simulation of the urinary bladder and its parts like the destrusor (little smooth muscle)
* Study of biological materials and its multi-scale hierarchy, creation of simplificated models with classical nonlinear continuum mechanics theory.
*
Characterization of destrusor-tissue model is based in the representation (based on hyperelastic matrix, and viscoelastic fibres)
*
Analisys of the interaction between bladder wall with urine modelled via the Particle Finite Element Method (PFE
* Development and maintenance of GiD pre and post processing system (www.gidhome.com).
* Development of methods for generating structure and unstructured meshes.
*
Development of input data technology for large scale computational problems.
* Graphical visualization techniques for large scale simulation problems.
* Generation of input data for finite element analysis from medical images.
* Meshless methods for parameterization of geometries for shape optimization problems.
Synapsys - NeuroInformatic-Support System for the Molecular Characterization and Therapeutic Approaches in SYNaptopathies
EUROPEAN COMMISSION, FP7
Coordinator: UIC
Partners: CIMNE, UIC, UL, Leibniz Institute of Polymers Research Dresden, Stockholm University, Università di Camerino, UniCAM, UAB, D-Pharma Ltd, NHIT, NBIO
(2009-2011)
Nynfa - Bio-Informatics Decision Support System for Characterization and Treatment of Neurological Diseases
Coordinators UIC
Partners: CIMNE, UIC
2009-2011
CARE 4 ME - Cooperative Advanced REsearch for Medical Efficiency
Ente: ITEA 2 Information Technology for European Advancement
Coordinator: Philips HealthCare
Partners: Philips HealthCare, CIMNE, VTT, ISI, Alma IT Systems, Sapheneia, Fraunhofer MEVIS, Bull
EUROPEAN COMMISSION, FP7
Coordinator: Attenborough Dental Laboratories
Partners: Attenborough Dental Laboratories, CIMNE, Nottingham University, Aristotle University, FIMI Philips, DIGILEA SA
Estudio de soportes cardiovasculares Coordinator: IberHospitex
Partners: CIMNE, UPM, Tecknalia, Robotiker
2007-2008
SIMCV. - Simulación del comportamiento del corazón y periferia vascular en condiciones sanas y patológicas. Aplicación al diseño y evaluación de dispositivos intravasculares y válvulas cardiacas
Ref: DPI2004-07410-C03-02
MINISTERIO de EDUCACIÓN Y CIENCIA PLAN NACIONAL I+D
Coordinador: Universidad de Zaragoza
Partners Universidad de Zaragoza CIMNE, Universidad de Sevilla
2004-2007
==
==
Disheart.DSS - Grid based decision support system for assisting clinical diagnosis and interventions in cardiovascular problems
EUROPEAN COMMISSION, FP6
Coordinador: CIMNE
Partners: I3A, Technical University Graz, TIMC-IMAG, COMPASS,HEARTCORE, George Mason University, ENDOART, QUANTECH (ES)
2003-2006
==
==
Published on 01/01/2009
Licence: CC BY-NC-SA license
Are you one of the authors of this document?