Line 3: | Line 3: | ||
In this paper, academic and industrial test cases have been conducted in order to validate the approach of using a Penalized Direct Forcing method coupled with an immersed turbulent wall model. Good results are obtained compared to a body fitted mesh with the Werner & Wengle wall model. In a shortcoming second step, we can project the coupling between the immersed wall law and a K-epsilon model, as well as obstacle shape optimization during the flow computation. | In this paper, academic and industrial test cases have been conducted in order to validate the approach of using a Penalized Direct Forcing method coupled with an immersed turbulent wall model. Good results are obtained compared to a body fitted mesh with the Werner & Wengle wall model. In a shortcoming second step, we can project the coupling between the immersed wall law and a K-epsilon model, as well as obstacle shape optimization during the flow computation. | ||
+ | |||
+ | == Abstract == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_4053400301605_abstract.pdf</pdf> |
In this paper, academic and industrial test cases have been conducted in order to validate the approach of using a Penalized Direct Forcing method coupled with an immersed turbulent wall model. Good results are obtained compared to a body fitted mesh with the Werner & Wengle wall model. In a shortcoming second step, we can project the coupling between the immersed wall law and a K-epsilon model, as well as obstacle shape optimization during the flow computation.
Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22
Volume Science Computing, 2022
DOI: 10.23967/eccomas.2022.218
Licence: CC BY-NC-SA license
Are you one of the authors of this document?