Line 3: | Line 3: | ||
Duct systems confining a subsonic air flow, such as ventilation ducts, often have a lightweight design. These lightweight constructions are easily excited by unsteady pressure fluctuations in the flow, causing structural vibrations and noise emissions. Designing effective solutions for this flow-acousticstructural problem requires a better understanding of the multi-physical interactions and efficient prediction tools. In this work, due to the confined configuration, the vibro-acoustic interaction is a strong two-way interaction and is modeled by coupling a flow-acoustic solver with a structural solver. The kinematic and dynamic continuity at the interface is ensured in this partitioned approach by a data exchange during runtime between the solvers. The data exchange is managed by the open-source coupling library preCICE [1]. The analysis of the flow-acoustic-structural interaction in a flexible flow duct with rectangular cross section was given in [2]. In this paper, the error resulting from the pressure mapping between both solvers is analyzed and an improved force mapping strategy is adopted. | Duct systems confining a subsonic air flow, such as ventilation ducts, often have a lightweight design. These lightweight constructions are easily excited by unsteady pressure fluctuations in the flow, causing structural vibrations and noise emissions. Designing effective solutions for this flow-acousticstructural problem requires a better understanding of the multi-physical interactions and efficient prediction tools. In this work, due to the confined configuration, the vibro-acoustic interaction is a strong two-way interaction and is modeled by coupling a flow-acoustic solver with a structural solver. The kinematic and dynamic continuity at the interface is ensured in this partitioned approach by a data exchange during runtime between the solvers. The data exchange is managed by the open-source coupling library preCICE [1]. The analysis of the flow-acoustic-structural interaction in a flexible flow duct with rectangular cross section was given in [2]. In this paper, the error resulting from the pressure mapping between both solvers is analyzed and an improved force mapping strategy is adopted. | ||
+ | |||
+ | == Abstract == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_113194675789_abstract.pdf</pdf> |
Duct systems confining a subsonic air flow, such as ventilation ducts, often have a lightweight design. These lightweight constructions are easily excited by unsteady pressure fluctuations in the flow, causing structural vibrations and noise emissions. Designing effective solutions for this flow-acousticstructural problem requires a better understanding of the multi-physical interactions and efficient prediction tools. In this work, due to the confined configuration, the vibro-acoustic interaction is a strong two-way interaction and is modeled by coupling a flow-acoustic solver with a structural solver. The kinematic and dynamic continuity at the interface is ensured in this partitioned approach by a data exchange during runtime between the solvers. The data exchange is managed by the open-source coupling library preCICE [1]. The analysis of the flow-acoustic-structural interaction in a flexible flow duct with rectangular cross section was given in [2]. In this paper, the error resulting from the pressure mapping between both solvers is analyzed and an improved force mapping strategy is adopted.
Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22
Volume Science Computing, 2022
DOI: 10.23967/eccomas.2022.253
Licence: CC BY-NC-SA license
Are you one of the authors of this document?