Line 6: Line 6:
 
== Abstract ==
 
== Abstract ==
 
<pdf>Media:Draft_Sanchez Pinedo_5935641321661_abstract.pdf</pdf>
 
<pdf>Media:Draft_Sanchez Pinedo_5935641321661_abstract.pdf</pdf>
 +
 +
== Full Paper ==
 +
<pdf>Media:Draft_Sanchez Pinedo_5935641321661_paper.pdf</pdf>

Revision as of 12:41, 23 November 2022

Summary

Advection driven problems are known to be difficult to model with a reduced basis because of a slow decay of the Kolmogorov N -width. This paper investigates how this challenge transfers to the context of solidification problems and tries to answer when and to what extend reduced order models (ROMs) work for solidification problems. In solidification problems, the challenge is not the advection per se, but rather a moving solidification front. This paper studies reduced spaces for 1D step functions that move in time, which can either be seen as advection of a quantity or as a moving solidification front. Furthermore, the reduced space of a 2D solidification test case is compared with the reduced space of an alloy solidification featuring a mushy zone. The results show that not only the PDE itself, but the smoothness of the solution is crucial for the decay of the singular values and thus the quality of a reduced space representation.

Abstract

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22

Volume Science Computing, 2022
DOI: 10.23967/eccomas.2022.179
Licence: CC BY-NC-SA license

Document Score

0

Views 8
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?