m (Move page script moved page Darlik et al 1970a to Darlik et al 2022a)
 
(No difference)

Latest revision as of 16:06, 25 November 2022

Summary

Woody biomass energy is a kind of renewable energy that contributes to the reduction of greenhouse gas emissions, the creation of healthier forests, and the reduction of wildfire danger. Generally speaking, simulations of the motion of biomass particles are a time-consuming process due to a large number of particles and required simulation time. We used a physicsinformed neural network (PINN) model to predict the motion of particles by including their equations of motion to reconstruct the velocity fields and reduce the processing effort. compare to the discrete element methods, the PINNs methods have the advantage of predicting the velocity fields without the knowledge of the simulation's boundary and initial conditions as well as geometry. It has shown that the proposed model has reliable prediction results with a mean percentage error in time less than 1 percent.

Abstract

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22

Volume Industrial Applications, 2022
DOI: 10.23967/eccomas.2022.223
Licence: CC BY-NC-SA license

Document Score

0

Views 4
Recommendations 0

Share this document

Keywords

claim authorship

Are you one of the authors of this document?