m (Onate moved page Review 191528639197 to Xu et al 2020a)
m
Line 16: Line 16:
 
'''Keywords''': blind source separation, rotor, vibration signals, auto-correlation de-noising, high-noise environments.
 
'''Keywords''': blind source separation, rotor, vibration signals, auto-correlation de-noising, high-noise environments.
  
'''*'''Corresponding author: Yinjie Jia'''('''[jiayinjie@hhu.edu.cn jiayinjie@hhu.edu.cn])
+
'''*'''Corresponding author: Pengfei Xu'''('''[xpf@hhu.edu.cn xpf@hhu.edu.cn])
  
 
==1. Introduction==
 
==1. Introduction==

Revision as of 21:42, 26 September 2020


Abstract: During the operation of the engine rotor, the vibration signal measured by the sensor is the mixed signal of each vibration source, and contains strong noise at the same time. In this paper, a new separation method for mixed vibration signals in strong noise environment (such as SNR=-5) is proposed. Firstly, the time-delay auto-correlation de-noising method is used to de-noise the mixed signals, and then one common algorithm (MSNR algorithm is used here) is adopted to separate the mixed vibration signals, which can improves the separation performance. The simulation results verify the validity of the method. The proposed method provides a new idea for health monitoring and fault diagnosis of engine rotor vibration signals.

Keywords: blind source separation, rotor, vibration signals, auto-correlation de-noising, high-noise environments.

*Corresponding author: Pengfei Xu([xpf@hhu.edu.cn xpf@hhu.edu.cn])

1. Introduction

During the operation of rotating machinery, the changes of physical parameters such as vibration and noise will inevitably occur. These changes are often the early fault factors leading to engine failure. The vibration signal measured by the sensor installed on the rotating machinery is a mixture of several vibration signals. How to analyze, process and identify these signals is very important for judging the working state of rotating machinery and fault diagnosis. Various traditional modern signal processing methods, such as Fourier transform, short-time Fourier transform and wavelet transform, have been widely used in vibration signal analysis. However, for mixed vibration signals in rotating machinery, the above analysis methods have obvious shortcomings, and it is difficult to separate or extract source signals independently.

Blind source separation (BSS) technology can separate multiple mixed signals, and the separated output signal will not lose the weak feature information in the source signal. The seminal work on BSS is by Jutten and Heraultin 1985 [1], the problem is to extract the underlying source signals from a set of mixtures, where the mixing matrix is unknown. In other words, BSS seeks to recover original source signals from their mixtures without any prior information on the sources or the parameters of the mixtures. Its research results have been widely applied in many fields, such as speech recognition, wireless communication,biomedicine, image processing, vibration signals separation, and so on [2-5].

There have been many effective and distinctive BSS algorithms, including fast fixed-point algorithm, natural gradient algorithm, EASI algorithm and JADE algorithm. When separating noiseless mixed signals, these algorithms show good separation performance. However, when the signal-to-noise ratio of the noisy signal is very low, the separation performance will become very poor, because these algorithms are derived without considering the noise model. Noise is ubiquitous, its existence not only has a serious impact on the normal work of the system, but also affects the normal measurement of useful signals. In signal processing, in order to retain useful signals, people always try their best to remove background noise. So the research of signal detection, especially the extraction and detection of weak signals submerged in strong noise, is a common problem that many engineering applications face and need to solve urgently.

In the process of machine operation, the vibration signal measured by vibration sensor will inevitably contain noise signal. When the BSS algorithm is used to separate the mixed vibration signals directly, it may cause great errors or draw wrong conclusions. Therefore, noise reduction is particularly important before blind separation of mechanical vibration signals.

Many scholars have used the combination of wavelet de-noising and BSS to separate mixed signals in noisy environment, and achieved some results. However, the wavelet de-noising method needs to set threshold, which may remove weak signals of useful components in mixed signals, leading to wrong separation results. Time-delay auto-correlation de-noising method is widely used in the de-noising of rotor vibration signals, and it does not lose useful components in the de-noising process.

Nowadays, there have been lots of BSS algorithms to calculate a de-mixing matrix, so we can make the estimated source signal only by the received signal. In this paper we select and optimize the BSS algorithm based on MSNR [6]. It has very low computational complexity because de-mixing matrix can be achieved without any iterative.

In this paper, the time-delay auto-correlation method is used to de-noise the noisy mixed signal, and then the MSNR algorithm is used to separate the de-noised mixed signal. The separation effect is further improved.

The rest of the paper is organized as follows. In Section 2, we introduce the noisy signal BSS model and principle of the time-delay auto-correlation method, the improved MSNR algorithm is summarized in the end. In Section 3, the simulation experiment that indicates the effectiveness of the method is presented. The final section is a summary of the content of this paper and possible application areas.

2. Methodology

2.1 Noisy Signal BSS Model

Source signals Review 191528639197-image1.png come from different signal sources (assumes that the signal is continuous signal), so Review 191528639197-image2.png can be think mutual statistical independence, As shown in Fig.1, Review 191528639197-image3.png is mixed signals or observation signals.

Review 191528639197-image4.png
Figure1. Noisy blind source separationmodel

The problem of basic linear BSS can be expressed algebraically as follows:

Review 191528639197-image5.png
(1)


where Review 191528639197-image6.png is mixed coefficient, formula (1) can be write in vector as follow:

Review 191528639197-image7.png
(2)


where Review 191528639197-image8.png is a column vector of source signals, Review 191528639197-image9.png is vector of mixed signals or observation signals, Review 191528639197-image10.png is additive white Gaussian noise, which is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. Review 191528639197-image11.png is Review 191528639197-image12.png mixing matrix. Problem of BSS only know observation signals and statistical independence property of Source signals. In virtue of the knowledge of probability distribution of Source signals we can recover Source signals. Assume Review 191528639197-image13.png is Review 191528639197-image12.png de-mixing matrix or separating matrix, problem of BSS can be describe as follow:

Review 191528639197-image14.png
(3)


where Review 191528639197-image15.png is a estimate of or separated signals. BSS has two steps, firstly, create a cost function Review 191528639197-image16.png with respect to Review 191528639197-image13.png , if Review 191528639197-image17.png can make Review 191528639197-image16.png reach to maximum, Review 191528639197-image17.png is the de-mixing matrix . Secondly, find a effective iterative algorithm for solution of Review 191528639197-image18.png . In this paper, cost function is the function of signal noise ratio, optimize processing of cost function result in generalized eigenvalue problem, de-mixing matrix was achieved by solving the generalized eigenvalue problem without any iterative.

2.2 MSNR Algorithm

Maximum signal-to-noise ratio (MSNR) algorithm belongs to matrix eigenvalue decomposition method. By constructing the signal-to-noise ratio contrast function and estimating the separation matrix by eigenvalue decomposition or generalized eigenvalue decomposition, the closed-form solution can be found directly without iterative optimization process. Therefore, it has the advantages of simple algorithm and fast running speed, and is convenient for real-time processing and hardware implementation of FPGA. The time continuous radio signal is sampled and changed into a discrete value. In the following formula, the time mark Review 191528639197-image19.png becomes Review 191528639197-image20.png .

According to the model of BSS, the error Review 191528639197-image21.png between the source signal Review 191528639197-image22.png and the output signal Review 191528639197-image23.png is regarded as noise. When the minimum value of Review 191528639197-image24.png is taken, the estimated value Review 191528639197-image23.png is the optimal approximation of the source signal Review 191528639197-image22.png , and the effect of BSS is the best. The power ratio of source signal Review 191528639197-image22.png to Review 191528639197-image24.png is defined as signal-to-noise ratio. When Review 191528639197-image24.png is the smallest, it is equivalent to the largest signal-to-noise ratio. According to this estimation criterion, the signal-to-noise ratio functionis constructed as follows [6]:

Review 191528639197-image25.png
(4)


Because the source signal Review 191528639197-image22.png is unknown, the mean value of noise is 0, so we use moving average of estimate signals Review 191528639197-image26.png instead of source signals Review 191528639197-image22.png . Formula (4) can be write as:

Review 191528639197-image27.png
(5)


where Review 191528639197-image28.png is moving average of estimate signals Review 191528639197-image23.png . We replace Review 191528639197-image29.png with Review 191528639197-image23.png in the molecule of formula (5) to simplify calculation, so we gained maximum signal noise ratio cost function as follow:

Review 191528639197-image30.png
(6)


According to formula (3), we get the formula (7) as follows.

Review 191528639197-image31.png
(7)


where Review 191528639197-image32.png is a moving average of mixed signals Review 191528639197-image33.png . The definition uses the moving average algorithm to predict the source signal. We substitute formula (3) and formula (7) into formula (6) and Formula (8) is deduced.

Review 191528639197-image34.png
(8)


where Review 191528639197-image35.png and Review 191528639197-image36.png are correlation matrixs, Review 191528639197-image37.png , Review 191528639197-image38.png .

2.3 Derivation of Separation Algorithms

According to formula (8), derivative of Review 191528639197-image39.png with respect to is:

Review 191528639197-image40.png
(9)


According to the definition, when the maximum value of the function Review 191528639197-image41.png is obtained, the gradient is 0. So we get the following formula.

Review 191528639197-image42.png
(10)


We can obtain de-mixing matrix Review 191528639197-image17.png by solving formula (10), it has been proved solution of formula (10) that is eigenvector of Review 191528639197-image43.png [7].All source signals can be recovered once: Review 191528639197-image44.png , where each row of Review 191528639197-image45.png corresponds to exactly one extracted signal Review 191528639197-image46.png.

2.4 Auto-correlation De-noising

The auto-correlation function describes the relationship of the same signal at different times[8]. For signal Review 191528639197-image47.png, its auto-correlation function is defined as:

Review 191528639197-image48.png
(11)


where Review 191528639197-image49.png is the time delay of auto-correlation function, Review 191528639197-image50.png is the period of the signal. Formula (11) shows that the auto-correlation function of the periodic signal is the same period as that of the original signal. However, noise signals are generally uncorrelated. When the time delay is zero, the maximum auto-correlation value is obtained and tends to zero with the increase of the time delay. Therefore, the auto-correlation function can be used in the noise reduction of mechanical vibration signal, so as to retain the useful periodic signal in the vibration signal, effectively remove the random aperiodic white Gaussian noise, and achieve remarkable noise reduction effect.

The auto-correlation function values of white Gaussian noise and rotor vibration signals are shown in Fig. 2. When the vibration periodic signal contains Gauss white noise, the auto-correlation value is the largest near this condition Review 191528639197-image51.png , which is affected by noise. Therefore, we can remove some auto-correlation data near the condition Review 191528639197-image51.png during removing noises.

Review 191528639197-image52.png
Figure2. Auto-correlation function values of white Gaussian noise signal and rotor vibration signals

The improved MSNR algorithm based on auto-correlation de-noising can be summarized as: (1) Finding the auto-correlation function of noisy mixed signals Review 191528639197-image47.png . (2) Removing the data near the condition Review 191528639197-image51.png and using the remaining data Review 191528639197-image53.png as the data of blind separation. (3) Blind separation of de-noised mixed signals Review 191528639197-image53.png by MSNR algorithm. The improved MSNR algorithm with four lines of Matlab code is listed in Table 1.

Table1. The improved MSNR algorithm

Input:The mixed signalsX.

Output: The demixing matrixWand the separated signalY.

1: Xd= denoise(X); % Xis denoised by using auto-correlation de-noising.

2: XS= smoothdata(Xd,'movmean'); % Smooth X by averaging over each window.

3: [W,d]=eig(cov(Xd-XS),cov(Xd));% Demixing matrixWis obtained from equation (10).

4: Y=(X*W)';  % Separated signalY.


Fig.3 presents the new system model of BSS based on the above-mentioned algorithm. The sequence numbers ①, ② , ③ and ④ in Fig.3 represent steps 1, 2, 3 and 4 in Table 1, respectively.

Review 191528639197-image54.png

Figure3. System model based on the improved MSNR algorithm

3. Simulations and Results

In order to verify the effectiveness of the algorithm, two sinusoidal periodic signals with different frequencies are used to simulate the mixing of vibration signals caused by different rotors.After the original vibration signal Review 191528639197-image55.png is superimposed with Gaussian white noise whose signal-to-noise ratio is -5dB, the source signal completely submerged by a strong noise is more difficult to be restored and identified in the engineering fields [9].The noisy mixed signal Review 191528639197-image47.png is obtained by random mixing matrix A (such as A =[0.4684 0.1952; 0.7384 0.5483]).The number of samples N=1000. Evaluating the performance of BSS, a correlation coefficient Review 191528639197-image56.png is introduced as a performance index [2].

Review 191528639197-image57.png
(12)


Review 191528639197-image58.png means that x and y are uncorrelated, and the signals correlation increases as  Review 191528639197-image59.png approaches unity, the signals become fully correlated as  Review 191528639197-image59.png becomes unity.

In the first simulation, the noisy mixed signals Review 191528639197-image47.png are separated directly by the original MSNR algorithm, the separation results are shown in Fig. 4. After separation, the correlation coefficients between the separated signals and the sources are 0.4978 and 0.4806 respectively, the separation effect is not good and it is very difficult to recognize separated signals correctly.

Review 191528639197-image60.png
Figure4. Separation of noisy mixed signals by the original MSNR algorithm(SNR=-5dB)

In the second simulation, the noisy mixed signals Review 191528639197-image47.png are separated by the improved MSNR algorithm. The separation results are shown in Fig. 5. After separation, the correlation coefficients between the separated signals and the sources are 0.9987 and 0.9988 respectively, the sources are well recovered and the separation effect has been significantly improved.

Review 191528639197-image61.png
Figure5. Separation of de-noised mixed signals by the improved MSNR algorithm(SNR=-5dB)

Many repeated tests can reduce the randomness and improve the reliability of results. Therefore, in order to evaluate the stability of these algorithms, total number of iterations in the present study is set to 50. The two algorithms are compared with each other from the separation accuracy (average correlation coefficient) . Table 2 presents obtained values after 50 iterations.

Table2. Average correlation coefficient for different algorithms after50 iterations (SNR=-5dB)

Algorithm average correlation coefficient
MSNR algorithm[6] 0.4862
proposed algorithm in this paper 0.9988


By comparing the two experiments, it is fully demonstrated that time-delay correlation de-noising can effectively remove noise and improve signal-to-noise ratio, which provides the precondition for the accurate realization of BSS of noisy mixed signals.

4. Conclusion

Aiming at blind source separation of rotor vibration signalsin high-noise environments,an improved MSNRalgorithm is proposed in this paper. Blind separation of mixed signals with strong noise can lead to large errors or even incorrect separation results. The time-delay auto-correlation de-noising method can effectively remove the strong noise signal without losing the useful components of the original signal, which greatly improves the signal-to-noise ratio and provides the precondition for the accurate realization of blind separation. It provides a new method for separating mixed signals in strong noise environment and further expands the applicability of the MSNRalgorithm. Due to its simple principle and good transplantation capability, it can be applied to the vibration signals of various mechanical rotors, such as the separation and detection of vibration signals of aero-engine and internal combustion engine.

Acknowledgments

This work was partially supported by the project of industrial-academic-research cooperation of Jiangsu province (No.2019320802000301)

Disclosures

The authors declare that there are no conflicts of interest related to this article.

References

[1] J. H´erault, C. Jutten, B. Ans. D´etection de grandeurs primitives dans un message composite par une architecture de calcul neuromim´etique en apprentissage non supervis´e, Proc. SSIP, Nice, France, pp. 1017–1022, 1985.

[2] P. Xu, Y. Jia, Z. Wang, M. Jiang. Underdetermined Blind Source Separation for Sparse Signals based on the Law of Large Numbers and Minimum Intersection Angle Rule. Circuits Systems and Signal Processing, 39(5), 2442–2458, 2020.

[3] Y. Jia, P. Xu. Convolutive Blind Source Separation for Communication Signals Based on the Sliding Z-Transform. IEEE Access, 8, 41213–41219, 2020.

[4] Y. Cheng, Z. Li, Y. Jin, et al. Blind Source Separation of Multi Mixed Vibration Signal Based on Parallel Factor Analysis. Proc. Prognostics and System Health Management Conference, PHM, Harbin, China, pp. 1–8, 2017.

[5] P. Xu, Y. Jia. Blind source separation based on source number estimation and fast-ICA with a novel non-linear function. Proceedings of the romanian academy series a-mathematics physics technical sciences information science, 21(2), pp. 93–194, 2020.

[6] J. Ma, X. Zhang, X. Blind Source Separation Algorithm Based on Maximum Signal Noise Ratio. Proc. First International Conference on Intelligent Networks and Intelligent Systems,Wuhan, China, pp. 625–628, 2008.

[7] M. Borga. Learning multidimensional signal processing." Ph.D. dissertation, Linkoping University, Sweden, 1998.

[8] Y. Jia, P. Xu. Noise Cancellation in Vibration Signals Using an Oversampling and Two-Stage Autocorrelation Model. Results in Engineering, 6, p. 100136, 2020.

[9] D. Huang, J. Yang, D. Zhou, et al. Recovering an unknown signal completely submerged in strong noise by a new stochastic resonance method. Communications in Nonlinear Science and Numerical Simulation, 66, 156–166, 2019.

Back to Top

Document information

Published on 12/01/21
Accepted on 22/10/20
Submitted on 07/07/20

Volume 37, Issue 1, 2021
DOI: 10.23967/j.rimni.2020.10.008
Licence: CC BY-NC-SA license

Document Score

0

Views 171
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?