m (Cinmemj moved page Draft Samper 897578145 to Luo et al 2007b)
 
(No difference)

Latest revision as of 12:07, 3 July 2020

Abstract

A weighted essentially non-oscillatory reconstruction scheme based on Hermite polynomials is developed and applied as a limiter for the discontinuous Galerkin finite element method on unstructured grids. The solution polynomials are reconstructed using a WENO scheme by taking advantage of handily available and yet valuable information, namely the derivatives, in the context of the discontinuous Galerkin method. The stencils used in the reconstruction involve only the van Neumann neighborhood and are compact and consistent with the DG method. The developed HWENO limiter is implemented and used in a discontinuous Galerkin method to compute a variety of both steady-state and time-accurate compressible flow problems on unstructured grids. Numerical experiments for a wide range of flow conditions in both 2D and 3D configurations are presented to demonstrate the accuracy, effectiveness, and robustness of the designed HWENO limiter for the DG methods.

Full Document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2007

DOI: 10.1016/j.jcp.2006.12.017
Licence: CC BY-NC-SA license

Document Score

0

Views 3
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?