(No difference)

Latest revision as of 14:22, 21 February 2020

Abstract

The formulation and finite element implementation of a finite deformation continuum theory for the mechanics of crystalline sheets is described. This theory generalizes standard crystal elasticity to curved monolayer lattices by means of the exponential Cauchy–Born rule. The constitutive model for a two‐dimensional continuum deforming in three dimensions (a surface) is written explicitly in terms of the underlying atomistic model. The resulting hyper‐elastic potential depends on the stretch and the curvature of the surface, as well as on internal elastic variables describing the rearrangements of the crystal within the unit cell. Coarse grained calculations of carbon nanotubes (CNTs) are performed by discretizing this continuum mechanics theory by finite elements. A smooth discrete representation of the surface is required, and subdivision finite elements, proposed for thin‐shell analysis, are used. A detailed set of numerical experiments, in which the continuum/finite element solutions are compared to the corresponding full atomistic calculations of CNTs, involving very large deformations and geometric instabilities, demonstrates the accuracy of the proposed approach. Simulations for large multi‐million systems illustrate the computational savings which can be achieved.

Full Document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2004

DOI: 10.1002/nme.944
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 108
Views 15
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?