m (Cinmemj moved page Draft Samper 992957190 to Espinoza et al 2014a) |
|
(No difference)
|
In this paper we develop numerical approximations of the wave equation in mixed form supplemented with non-reflecting boundary conditions (NRBCs) of Sommerfeld-type on artificial boundaries for truncated domains. We consider three different variational forms for this problem, depending on the functional space for the solution, in particular, in what refers to the regularity required on artificial boundaries. Then, stabilized finite element methods that can mimic these three functional settings are described. Stability and convergence analyses of these stabilized formulations including the NRBC are presented. Additionally, numerical convergence test are evaluated for various polynomial interpolations, stabilization methods and variational forms. Finally, several benchmark problems are solved to determine the accuracy of these methods in 2D and 3D.
Published on 01/01/2014
DOI: 10.1016/j.cma.2014.03.015
Licence: CC BY-NC-SA license
Are you one of the authors of this document?