Alex.barbat (talk | contribs) |
Alex.barbat (talk | contribs) m (Alex.barbat moved page Draft Barbat 736655312 to Vargas et al 2018a) |
(No difference)
|
The main goals of this article are to analyze the use of simplified deterministic nonlinear static procedures for assessing the seismic response of buildings and to evaluate the influence that the uncertainties in the mechanical properties of the materials and in the features of the seismic actions have in the uncertainties of the structural response. A reinforced concrete building is used as a guiding case study. In the calculation of the expected spectral displacement, deterministic nonlinear static methods are simple and straightforward. For not severe earthquakes these approaches lead to somewhat conservative but adequate results when compared to more sophisticated procedures involving nonlinear dynamic analyses. Concerning the probabilistic assessment, the strength properties of the materials, concrete and steel, and the seismic action are considered as random variables. TheMonteCarlo method is then used to analyze the structural response of the building. The obtained results show that significant uncertainties are expected; uncertainties in the structural response increase with the severity of the seismic actions. The major influence in the randomness of the structural response comes from the randomness of the seismic action. A useful example for selected earthquake scenarios is used to illustrate the applicability of the probabilistic approach for assessing expected damage and risk. An important conclusion of this work is the need of broaching the fragility of the buildings and expected damage assessment issues from a probabilistic perspective.
Published on 01/01/2013
Licence: CC BY-NC-SA license
Are you one of the authors of this document?